
I 

N A S A  C O N T R A C T O R  
R E P O R T  

FLIGHT COMPUTER AND 
LANGUAGE PROCESSOR STUDY 

by Rdymond J. Rubey, Wi'lZiam C. Nielsen, and Luur( e l  RelztZey 

Prepared by 
LOGICON, INCORPORATED 

San Pedro, Calif. 
for Electronics  Research  Center 

N A T I O N A L   A E R O N A U T I C S   A N D   S P A C E   A D M I N I S T R A T I O N  W A S H I N G T O N ,   D .  C. M A R C H  1970 

~ 7, 
I 



I 
P a  i 

I 

C& 
/NASA CR-1520 

TECH LIBRARY KAFB, NM 

/FLIGHT COMPUTER AND LANGUAGE PROCESSOR STUDY 

c- 1, 

By Raymond J. Rubey, William C. Nielsen, 
and Laurel Bentley 

Distribution of this  report is provided  in  the interest of 
information  exchange.  Responsibility for the  contents 
resides  in  the  author or  organization that prepared it. 

u 
Prepared  under  Contract No.  NAS 12-2005 by 

San Pedro,  Calif. 
I L, ~ L O G I C O N + I N C ~  

for Electronics  Research  Center 

NATIONAL  AERONAUTICS AND SPACE ADMINISTRATION 
-. -. -. - 
For sale by the  Clearinghouse for Federal  Scientific  and  Technical  Information 

Springfield,  Virginia 22151 - Price $3.00 



CONTENTS 
(continued) 

Assignment . . . . . . . . . . . . . . . . . . .  7 i  
Fixed-point  Assignment  Using  TEMP . . . . . . .  75 
Scaling  Operator . . . . . . . . . . . . . . . .  76  
Multiple  Assignment . . . . . . . . . . . . . . .  79 
Nonscalar  Assignment . . . . . . . . . . . . . .  81 
Exchange  Assig.nment . . . . . . . . . . . . . .  85 

Program  Control  . . . . . . . . . . . . . . . . . . .  87 
Statement  Labels . . . . . . . . . . . . . . . .  88 
GOTO Statements . . . . . . . . . . . . . . . .  89 
Switched GOTO Statements . . . . . . . . . . . .  90 
Conditional  Statements . . . . . . . . . . . . . .  92 
Loop  Statements . . . . . . . . . . . . . . . .  95 
Inhibit/Enable  Statements . . . . . . . . . . . .  98 
Chronic  Statements . . . . . . . . . . . . . . .  100 
STOP  Statements . . . . . . . . . . . . . . . .  102 

Subprograms . . . . . . . . . . . . . . . . . . . . .  103 
Procedure  Declarations . . . . . . . . . . . . .  104 
Procedure  Calls . . . . . . . . . . . . . . . . .  107 
Functions . . . . . . . . . . . . . . . . . . . .  110 
Close  Declarations . . . . . . . . . . . . . . .  111 
Close  Calls . . . . . . . . . . . . . . . . . . .  113 
Library  Subprograms . . . . . . . . . . . . . .  114 

Directives . . . . . . . . . . . . . . . . . . . . . .  119 
Debugging Directives . . . . . . . . . . . . . .  1 2 0  
Timing  Directives . . . . . . . . . . . . . . . .  121 
Optimization  Directives . . . . . . . . . . . . .  122 
Direct Code Directives . . . . . . . . . . . . .  123 

P a r t  I11 . Compiler  Considerations . . . . . . . . . . . . . . . . .  125 

Compiler  Outputs . . . . . . . . . . . . . . . . . . .  129 
Optimization  Techniques . . . . . . . . . . . . . . . .  125 

Compiler  Capacities . . . . . . . . . . . . . . . . .  130 
Implementation-Dependent  Language  Features . . . . . .  131 

Appendix A . Index for P a r t  I1 . . . . . . . . . . . . . . . . . . .  133 

iv 



FLIGHT COMPUTER AND 
LANGUAGE PROCESSOR STUDY 

By Raymond J. Rubey, William C. Nielsen, 
and Laurel  Bentley 

Logicon,  Inc. 
San  Pedro,  California 

PART I - SUMMARY 

This  report  describes  the  results of a study  to  define a higher  level 
programming  language  suitable  for  the  development of real-time  aerospace 
programs.  The  programmer's  reference  manual  for  such a language  and 
compiler  considerations  for  the  language's  implementation  are  presented  in 
the  succeeding  parts of this  report. 

Having  being  intended  to  be of immediate,  practical  benefit,  the  study 
was  oriented  toward  computers  and  applications of the  present  and  near 
future. While  not considered a special-purpose  machine,  the  typical 
aerospace  computer  has a relatively  small  memory  and a fairly limited 
instruction  set,  with no hardware  floating-point  operations  and  minimal 
instructions  for  logical  decision  functions  and  internal  index  register  manipu- 
lation. With regard  to  the  problems  to  be  solved,  these  consist  principally 
of arithmetic  calculations  and  logical  decisions,  with  significantly  fewer 
text  manipulation  and  table  look-up  operations.  Guidance  and  navigation 
functions  are  performed by repeating  the  appropriate  calculations  at a re la-  
tively slow major  cycle  frequency;  other  functions  such  as  input/output 
processing  and  control  are  performed  at  much  higher  minor  cycle  frequencies. 
The  required  response  times  between  input  and  output, which are  functions 
of the  overall  vehicle  system  design,  are  generally  very  short - -  on the  order 
of a few seconds  at  most. 

The  study  plan  itself  consisted of using two candidate  languages  to  code 
portions of a representative  problem  designed  to  be  solved on a current 
computer;  analyzing  the  resultant  programs  to  select a base  language  for 
further  definition;  using  the  language  thus  defined  to  reprogram  the  same 
problem;  and  analyzing  the  second  set of programs  to  enable  further  lan- 
guage  definition  and  refinement.  Thus  the  first  step  to  be  taken  was  to  choose 
the  candidate  languages. SPL, which  had been  defined  for  the  application 
area,   was  selected,  as was  PL/I,  the  latter  because  it  included  many of the 
real-time  capabilities  found  in  SPL.  Other  possible  candidates  were  elimi- 
nated, FORTRAN, for  example,  because  most of its  functions  can  be  accom- 



plished  using  the  richer PL/I, and  JOVIAL  because  the  developers of SPL 
had already  indicated  that  it  was  inadequate  and  had  found  it  necessary  to 
make  many  extensions  to  basic JOVIAL in  the  definition of SPL.  Then,  to 
serve as the  benchmark  problem,  portions of the  Titan  IIIC  programming 
specification  developed  by  The  Aerospace  Corporation  were  selected.  These 
consisted of a set of typical  guidance  equations,  program  blocks  for  engine 
output  command  calculations  and  staging  sequencing,  and a portion of the 
main  control  logic flow diagram,  this  last  to  enable  determining  the  languages' 
suitability  for  coding  executive  functions.  The  overall  1-second  major  cycle 
logic  was  specified,  along  with  the  executive  program  to  control  proper 
phasing of the  major  cycle  and 5 - ,  i o - ,  and  20-millisecond  minor  cycle 
functions. As is  typical of aerospace  programming  specifications,  also 
included  was  complete  information  specifying  the  range  and  accuracy  re - 
quired  for all program  parameters,  including  where  extended  precision 
was  to  be  used,  and  the  critical  timing  requirements  to  be  met. 

Selecting  the  Base  Language 

Four  programmers  independently  coded  the  representative  problem, 
two in  each  language.  They  were  instructed  to  spend as much  time as 
possible on its  more  difficult  and  aerospace-peculiar  aspects,  avoiding 
repetitive  operations  that would not  lead  to  meaningful  conclusions or  that  
could  be  handled  in  some  way  not  provided  for  in  the  assigned  language. 
None of the  programmers  was  able  to  code  the  entire  benchmark  problem 
in  the two weeks  allotted,  but  each  succeeded  in  coding  substantially  more 
than would have  been  possible  using  assembly  language.  Thus  both SPL and 
PL/I   were  shown to  offer  significant  benefits,  chiefly  through  their  rela- 
tively  simple  assignment  and  control  statements.  Nevertheless,  both 
languages  had  serious  deficiencies which prevented  complete,  direct  solution 
of the  problem.  It  was  clear  that  the  tricks  and  circumlocutions  necessary 
to  overcome  these  deficiencies would negate  the  hoped-for  benefits of using 
a higher  level  language. 

While  the  programmers  were  able  to  specify  the  equations  easily, 
describing  the  data  attributes  necessary  to  control  precision  throughout 
the  steps of a calculation  presented  difficult  problems.  This  reflects  the 
fact  that  both  languages  are  oriented  to  having  the  bulk of the  calculations 
done  in  floating  rather  than  fixed  point. Many of the  fixed-point  difficulties 
were similar in  that  the  relatively  simple  way of doing  an  operation  in 
assembly  language  was  not  available  in  either  SPL  or PL/I; to  overcome 
these  problems,  the  programmer would have  to  break  the  program  into 
steps  almost as numerous  and  as  detailed as he would when  coding  in 
assembly  language.  For  example,  one  operation  the  programmers  needed 
to  be  able  to  do but  could  not,  at  least  not  without a great  deal of difficulty, 

2 



was  to  define a fixed-point  variable  with  the  binary  point  outside  the  number 
of bits  actually  allocated  to  the  item.  This may be desirable  for  variables 
having  either  very small or   very  large  values;  as a hypothetical  example of 
the  lat ter,  i f  the  coordinates of a vehicle's  position  are  measured  in  feet 
and it is sufficient  to  maintain  each  to a precision of only 16 feet,  the  pro- 
grammer would wish  to  scale  the  coordinates  so  that  the  binary  point is 
four  places  to  the  right of the  computer  word's  least  significant  bit  in  order 
to  allow  the  greatest  range of values  for  position. 

Another  problem  arose when it  was  necessary  to  give a variable  one 
scaling  for a particular  mission  phase  and  another  scaling  for a subsequent 
phase.  For  example,  it   may  be  necessary  to  maintain a vehicle's  position 
to  one  precision  during  near-earth  maneuvers  and  to a much  less  accurate 
precision  subsequently.  However,  neither  PL/I  nor  SPL  offered a means 
of dynamically  rescaling  variables  without a great  deal of coding  duplication. 

A third  problem  came  about  with  the  use of double-precision  accumulation 
of products.  To  exemplify  the  mechanism  involved,  the  multiply  operation 
in  the  typical  aerospace  computer wi l l  generate a double  length  for  the  inter- 
mediate  products of the  following  equation: 

3 

Making  use of the  double-precision  addition  command  available  in  many 
computers  enables  accumulating  the  sum  in  double  precision  to  obtain 
improved  accuracy;  however,  this  requires  one  more  instruction  per  term 
and  causes  some  increase  in  execution  time. In some  cases  it  is not de- 
sirable  to  pay  this  penalty  to  achieve  improved  accuracy;  in  other  cases 
using  double  precision  is  mandatory,  such  as  in  matrix  operations  when 
the  intermediate  products  are of opposite  sign  but  nearly  equal  in  magnitude. 
The  programmers  required  control  over  the  choice - - something  that  neither 
PL/I nor SPL offered  simply  and  directly. 

A fourth  problem  area  concerned  the  temporary  saving of intermediate 
results  in comrnon  locations.  Neither  language  provided a convenient  mecha- 
nism  for  doing  this  with  fixed-point  quantities. 

These,  then,  have  been a few of the  problems  encountered  with  fixed- 
point  variables  in  coding  the  test  problem.  Turning now to  constants, a 
peculiarity of aerospace  programming is found in  the  existence of two distinct 
types of constants:  absolute  and  modifiable.  Absolute  constants,  such as the 
coefficients  in a polynomial  approximation  for  the  sine of an  angle,  are  those 
which are  very  unlikely to be  altered when  the program  itself is changed  to 

3 



accommodate  it  to a new mission.  Modifiable  constants,  for  example,  ac- 
celerometer  nonlinearity  Compensation  terms, are those  which  are  expected 
to  be  different  for  different  missions.  The  program is written  and  checked 
out  using  nominal  values  for  such  mission-dependent  constants,  and  the  actual 
values  are  loaded  directly  into  memory when  they  become known, often  short- 
ly  before  the  mission. To permit  this  to  be  done,  the  programmer  must  be 
able  to  specify  the  attributes of such  constants  (required  precision  and maxi- 
mum  value as well as the  nominal  numeric  value) as completely as he  can 
those of variables.  That  is,  he  needs  to  be  able  to  specify enough infor- 
mation so that  modifiable  constants  could  be  treated  similarly  to  variables 
in  the  automatic  scaling  algorithms of a compiler; i f  he  could  not do so, the 
program would have  to  be  recompiled  every  time  the  value of a single mis- 
sion-dependent  constant  was  changed.  The  alternative  provided  in  PL/I  and 
SPL - -  defining  such  constants  as  variables  having  preset  values - -  w a s  
found undesirable  because  it would hinder  any  compiler  optimization  functions. 
Also  pointed up by an  analysis of the  test  problem  programming  was  the  need 
for  an  ability  to  define  the  value of a constant as a function of other  constants; 
this would simplify  programming  in  many  cases  and,  by  enabling  automatic 
change of such  dependent  constants, would help  to  reduce  errors  introduced 
when constants  are  modified. 

Other  language  deficiencies  were found  in  many  areas. While  the aero-  
space  programmer is  concerned  chiefly  with  incremental  inputs,  telemetry, 
and discrete  output  commands,  the  input/output  capabilities of both  languages 
were not  easily  related  to  the  requirements of the  benchmark  problem,  in- 
stead  emphasizing  files,  records,  and  peripheral  devices.  Similarly,  review 
of the  limited  debugging  capabilities showed that  they  were  not  oriented  to 
aerospace  programs,  for which  much of the  debugging is done  using  computer 
simulators  rather  than  the  actual  computers.  Also,  neither  language  provided 
sufficient  programmer  control  over  object  code  optimization;  however,  PL/I 
contained a built-in  possibility  for  extending its existing  capabilities  in  this 
a rea .  

Both  languages  were  discovered to have  numerous  features  that  were not 
required  for  coding  the  representative  benchmark  problem.  That  there  should 
be  many  features  in  PL/I  that  were  not  particularly  useful  for  the  application 
area  was  expected,  but SPL also  had a great  many  features of little  or no 
utility,  among  them  complex  array  declarations,  table  declarations,  alterna- 
t ive  forms of many  statement  types,  text  manipulation,  and  automatic  and 
controlled  storage. Both  provided  many  needed  capabilities,  and  both  were 
deficient  in  the  areas of fixed-point  data  declaration  and  arithmetic  control. 
PL/I  was  superior as regards  optimization  control but lacked  desirable  fea- 
tu res  of SPL,  such as built-in  matrix  operations,  decision  tables,  and a 
simple  method of inter.facing  with  direct  code. 

4 



Overall ,   SPL  was found to  have  more  features that might be useful  and 
fewer that were  clearly  unsuitable;  hence it was  selected as the base  for  de 
velopment  into a concise  aerospace  programming  language.  The  choice  was 
influenced b,y the fact that the  Air  Force  and  System  Development  Corporation 
were  proceeding  with  the  development of SPL,  and it was  expected that con- 
tinuing  cooperation  among  the two government  agencies  and  their  contractors 
might result in further  modification of SPL to  make it more  suitable  and  at 
the same time compatible  with the corresponding NASA language.  The NASA 
language  developed  on the basis of this work  and  the  subsequent  study  phases 
was  given a distinct  name,  CLASP  (Computer  Language  for  Aeronautics  and 
Space  Programming),  to  minimize  confusion  between it and the continually 
evolving  SPL.  Many  modifications  to  SPL  have  been  initiated by System  De- 
velopment  Corporation as a resul t  of the work  discussed here, and  most of 
the  deficiencies  discussed  above  no  longer  exist  in  SPL.  The  objective of 
having  CLASP be  a proper  subset of SPL  has been  achieved  in  large  part.  In 
the  a'bsence of a standardization  control  control  authority,  however,  the  com- 
pati'bility of various  compiler  implementations  will  almost  certainly  vary, 
particularly  with  regard  to  semantic  differences. 

CLASP'S  Capabilities 

While  CLASP'S  basic  structure is similar  to  that of other  higher  order 
languages - -  the  assignment  and  logical  control  statements,  for  example, 
would not  be  surprising  to a FORTRAN programmer - -  it provides  many 
features  that   are  ei ther unique  in  themselves or   are   used  in  unique  ways. 
Only  these  unique  capabilities  will  be  discussed  here. 

CLASP allows  the  programmer  to  declare  the  attributes of fixed-point 
data  items  such  that  the  code  generated  by a compiler  will  perform  the 
indicated  arithmetic  with  the  required  accuracy  and  without  excessive  penal- 
ties  in  object  code  size  or  execution  time.  The  CLASP  programmer  can  specify 
the  minimum  total  number of bits ,  m, and  the  minimum  number of fractional 
bits ,  f ,  to  be  allocated  to  each  fixed-point  item.  In  practice,  he  should 
specify  for  each  data  item  only  the  minimum  number of bits to  be allocated 
for  the  expected  range of values  and  the  necessary  accuracy.  While  the  total 
bits, m, needed  to  allow  data  storage  at  the  required  precision  might  not  be 
a multiple of the  number of bits  per  word,  it  would require  fewer  instructions 
and less  execution  time  to  allocate  storage  for  the  item  in  increments of full 
words. It is envisioned  that a CLASP  compilerwill  not  use  any  excess  bits 
to  allocate  more  than  one  data  item  to a single  computer  word  unless  explicitly 
directed  to  do so,  but instead  will  use  them  to  generate a consistent  set of 
scalings  that  minimizes  intermediate  shifting. 

A s  an  example, a minimum  intermediate  scaling  readjustment would be 
required  in  evaluating  the  expression A t B - C i f  all three  variables  had 

5 



the same  number of integer  and  fractional  bits,  even  though  the  programmer 
had  not  declared them so .  The  minimum  number of integer  bits  that  must 
be  allocated  for  each is implicit  in  the  programmer's  declaration,  and is the 
total  number of bits   declared, m, l e s s  the number of fractional  bits  declared, 
f ,  and less  the  sign  bit.   For a computer  with a 24-bit  word  size,  it  can  be 
seen  from  Table I that  there would be  three  ways of storing A, B, and C i f  
each  had  been  declared  to  be 22 bits  in  size.  It  can  also  be  seer.  that  there 
is but  one possible  sca?,-lg  that is common  to all three  variables: 1 1  integer 
bits  and 12  fractional  bits.  For  simple  cases  such as this, a compiler  can 
t ry  all possible  scalings  and  select  the  common  scaling,  within  the  range 
and  precision  requirements  specified  by  the  programmer  in  the  data  decla- 
ration,  that  permits  the  minimum  intermediate  scaling  readjustment.  The 
resulting  allocations wi l l  not be  the  exact  allocations  he  has  specified, but wi l l  
be  both  consistent  and  in  excess of his  declared  requirements.   For  more 
complex  expressions  containing  variables  that  also  appear  in  other  expres- 
sions, a compiler  will  require  elaborate  heuristics  and  algorithms  to  select 
the  scalings.  The  programmer  will  have  to  remember  that  those  selected by 
the  compiler  are  guaranteed  to  be  within  his  specified  ranges,  with  the  com- 
piler  choosing  the  best  scalings  when,  by  declaring  the  number of bit's to  be 
smaller than  some  multiple of the  computer's  word  size,  he  has  given it the 
flexibility  to  do so. 

A s  mentioned  in  the  discussion of the  base  language  selection,  another 
fixed-point  problem  existed  with  regard  to  the  use of registers  or  data  words 
for  temporary  storage.  Normally,  when a fixed-point  assignment of the  form 
cy = p is made,  before  storage  takes  place  the  computed  value of B must  be 
adjusted by shifting  in  order  that  the  binary  points of cy and B will be aligned. 
Such a readjustment  should  not be made,  however, i f  cy is a temporary  var- 
iable that might be used  in  many  places  in  the  program  and  with  different 
attributes  desired  for  each  place.  The  solution  provided  for this problem  in 
CLASP is to  declare  such  temporary  variables as data  items  having  the attri- 
bute  TEMP. Doing this  has  the  result  that  such a variable  will  assume  the 
temporary  attributes of the  expression  to  the  right of the  equals  sign  until  such 
t ime  as a new temporary  assignment is made  to  that  variable. 

To  solve the problems  relating  to  modifiable  constants,  CLASP  allows 
them  to be specified as parameters;  absolute  constants  are  specified  simply 
as  constants.   Parameters  may be changed  before  program  execution  without 
requiring  recompilation,  while  constants  are  fixed at compile  time. Both a r e  
likely  to be assigned  to  read-only  storage if  the aerospace  computer  has  such 
a structure. 

The  fact  that a constant's  value  does  not  change  without  recompilation 
means  that a CLASP  compiler  will be able  to  determine  the  permitted  range 
of scalings  solely  from  the  value given. If, for  example, a constant's  value 

6 



TABLE I 

POSSIBLE  ALLOCATIONS  FOR  VARIABLES IN 
A COMPUTER  WITH A 24-BIT WORD SIZE 

~ ~~ 

Data  Declaration 

Variable 
Total  Fractional 
Bits  Bits 

Integer 
Bits 

(i=m-f- 1) 

11 

10 

9 

Possible  Scalings (i:f) 

9:14 1 I 13:lO I 12:l l  11:12 10:13 I 
No Yes  Yes Yes No 

No 

No No Yes  Yes Yes 

No Yes Yes  Yes 

9: 14 13:lO 12: 11 11:12 10:13 

No Yes  Yes Yes No 

No 

No No Yes  Yes Yes 

No Yes Yes  Yes 

1 



is esta'blished as 2. 5, only two bits would  need  to be allocated  for the integer 
part  and one for  the  fractional  part,  greatly  increasing the flexibility  available 
to  the  scaling heuristics and  algorithms  in  finding  an  optimum  set of scalings. 
Constants  might  not  even  appear  explicitly  in the program;  for  example, a 
multiplication by a constant  might be replaced  by a shift. Parameters ,  
on the  other hand., must  appear  and  must be declared  with  attributes 
such as the range of values  and the precision  required,  just as variables are 
declared. 

In  cases  where  the  scalings  derived  through the use of the  scaling  algo- 
rithms may  be  undesirable,  CLASP  provides a scaling  operator  to  make it 
possible  for  the  programer  to  specify the total  number of bits  and the num- 
be r  of fractional  bits  for  any  intermediate  result, just as  he  can  for  declared 
items.  Thus  in  the  expression 

A t  ( B  - C )  . S  ( I O ,  9 )  S D  

the  scaling  operator . S (  10,  9 )  specifies  that  the  size of the  intermediate  result 
( B  - C )  i s  10  bits,  nine of which  must  be  fractional  bits.  This  capability  has 
been  provided f o r  occasions when  the programmer  has  information  about  inter- 
mediate  results - -  such  as  the  fact  that B and C a re  always  about  the  same 
size - -  which i s  not  supplied  in  the  data  declaration  but  which  may  be  required 
to  generate  code  that  produces  results of the  required  precision. An abbre- 
viated  form of the  scaling  operator  can  also  be  used when  the programmer 
wishes  to  accumulate  products  in double precision  and  assign  the  result  to a 
single-precision  variable. 

Object  code  efficiency is of great  interest  because of the small memory 
size of the  typical  aerospace  computer  and  the  strict  real-time  requirements 
to be achieved by the  typical  program.  Accordingly,  many  features  are  in- 
corporated  to  ena'ble  the  generation of such  efficient  object  code by a CLASP 
compiler.  Primary  among  these  are  three  optimization  directives  that  can be 
applied  to  any  desired  area of code:  OPTIMIZE  SPACE  (n),  OPTIMIZE 
TIME(n),  and SIC. The last of these is provided  for  indicating that no optimi- 
zation is to be attempted by the  compiler; it is included  for  use  primarily  in 
early  program  development  stages  when  the  programmer is interested  in  get- 
ting a rough  idea  about  program  correctness. By placing a SIC at the  beginning 
of a program  area,  the  programmer  can  direct  that  all  other  optimization 
directives  within  that  area  are  to be ignored. 

F o r  the  space  and  time  optimization  directives,  the  parameter n serves  to 
specify the degree  or  level of optimization.  Recall  thatmost  aerospace  programs 
have  functions  which  must be performed at a high  frequency  and  others  which 
are  performed  at   lower  frequencies.   Clearly,  it is very  important  to  optimize 
the  execution  time of the  higher  frequency  functions,  and  proportionately  less 

8 



important as the frequency  becomes  lower.  For  example, i f  a control  function 
i s  to  be  performed 20 times each  second  and a guidance  function  but  once  each 
second, the p r o g r a m e r  could  specify  OPTIMIZE  TIME (20) for  the  former 
function  and  OPTIMIZE  TIME (1) for the latter. In the  event that program 
areas included  in the higher  frequency  functions are to  be  executed  only  under 
special  conditions,  the  programmer  can  assign  to them a relatively  low  degree 
of time optimization. Wi th  regard  to space optimization, this is most  likely  to 
be  specified  for  compiling the lower  frequency  functions. 

Among  the  CLASP  features  that  also  have a marked  effect  on  the  degree 
of optimization  obtained is  the  nonscalar  subscript, (*), by  means of which a l l  
elements of a row,  column, o r  plane of an  array  can  be  successively  refer-  
enced.  Consider  the  following  set of equations: 

P - k i i  Vx + k12 Vk + k i 3  V i  

k 2 i  y 22  y 

Z - k3i Vz t k32 VL t k33 V l  

X 
- 

P 

P 

- 
Y 

- V t k VI t k23 VIf 
Y 

- 

If variables V V , . . . , V" and  the  constants k k i2 , .  . . , k33  are  declared 
as   e lements   o f i rAys ,   the   s ing le  CLASP statement Z 

will  accomplish  the  computations  for  all  three  equations.  This  CLASP  state- 
ment  could be translated by a compiler  in two ways. First, it could be re -  
placed by an  equivalent  statement  with  normal,  single-valued  subscripts,  and 
this  statement  preceded by  a loop  control  statement  that would cause it to be 
executed  three  times,  with  the  subscript  value,  initially 0, incremented  each 
time. This would result  in compiled  code of size S I  and  execution  time  ti. 
Alternatively,  three  statements  could be generated  from the  single  statement 
written;  these  statements would be similar  to  the  given  equations  (with no 
su.bscripting).  This  alternative would result  in  compiled  code of size s2 and 
execution  time t2. If S were the level of space  optimization  and T the  level 
of time  optimization  specified  in  the  appropriate  optimization  directive  state- 
ments,  the  best  choice would be the first method if S X S I  + T x ti  were  less  
than S X 5 2  + T X t2 and the second  method i f  not. 

The  optimization  directives  are  also  used  in  the  generation of fixed-point 
code.  In  the  absence of any  other  information  (e.  g.,  from the scaling  oper- 
ator),  the  intermediate  rescalings  that  may  be  required  during  arithmetic 
expression  evaluation to resolve  otherwise  conflicting  scalings  should  be 
chosen  such as to  minimize  the  function 

9 



where 

n = total  number of rescaling  operations 

T = time  optimization  parameter n in  effect i for  the ith rescaling  operation 

r = execution  time  for  the  ith  rescaling  operation 
i 

This  function  states  that  scaling  readjustments  should  be  done  in  the  region 
where  the  degree of time  optimization  specified  is  the  least. A similar func- 
tion  could  be  written  for  the  effect of rescaling  on  size  optimization.  In a 
practical  case,  it  will  not  be  necessary  to  evaluate all possible  scaling  re- 
adjustments  to  determine  the  minimum  Tr  because  the  problem  can be par- 
titioned  and  individual  scaling  readjustments  determined  for  individual  vari- 
ab les   o r  small groups of variables. 

CLASP  contains  features which some  might  think of as retrograde  steps 
to machine  dependency.  These  features  were  added  to  promote  efficiency  and 
because  an  aerospace  computer  program of necessity  has a close  interrelation- 
ship  with  its  hardware  environment.  It is  possible  in  CLASP  to  assign  an 
identifier  to a machine  register  and  declare  the  attributes (e. g.,  data  type, 
number of integer  and  fractional  bits) of that  register  when  it is referenced 
by  that  identifier.  For  example,  the  statement 

DECLARE HARDWARE INTEGER,  INDEXi=2 

would assign  the  identification INDEX1 to  hardware  address 2 and  specify 
that  it  contained  integer  values.  In  conjunction  with  these  hardware  declar- 
ations,  the  programmer  has  the  capability of reserving  the  use of regis ters  
for  his own special  purposes.  The  directive LOCK 2 would prevent  the 
compiler  from  generating  code  using  the  indicated  hardware  register 2 except 
where  the  programmer  explicitly  referenced  it  by  the  declared  identifier. 
He would return  the  use of that   register  to the  compiler  by  the  directive 
UNLOCK 2. 

Several  in-line  arithmetic  functions  are  provided  for  doing  elementary 
operations  such  as  absolute  value,  rounding,  and  limiting  to a specified  range. 
Logical  operators  are  included  for  performing  logical  product,  logical  sum, 
exclusive OR,  and  shifting  operations.  In  the  event  that  the  programmer 
cannot  accomplish  his  objectives  using  these  machine-like  operations,  he 
can  lapse  into  in-line  assembly  code  without  any  attendant  inefficiencies  due 

10 



to  linkages.  The  interrupt  capability of the  computer,  utilized  for  most 
aerospace  program  executives, is handled  in  CLASP  by  means of the ON state- 
ment;  this  allows the programmer  to  declare  the  means  by which  the  interrupt 
routine is entered  and  exited,  After  the  entry  mechanism  has  been  declared, 
interrupt  processing is handled  by  means similar to  the  normal  subroutine 
capability of the  language;  thus  the  executive  can  be  considered as a special 
case of a subroutine.  The LOCK and UNLOCK statements  used  to  reserve 
and restore  the  use of machine  registers  can  also  be  used  to  inhibit   or  activate 
interrupts.  

Some of the  things  that  CLASP  does  not  contain  may  seem  surprising. Any 
superfluous  features would be  likely  to  make  the  language  harder  to  learn  and 
use,  to  make  it  more  costly  to  implement,  and,  most  important,  to  result  in 
concomitant  losses  in  the  efficiency of the  generated  object  code. Much atten- 
tion  was  therefore  paid  to  the  specification of a "bare  bones"  language  ade- 
quate  to  do  the  job  efficiently  but  containing  no frills. 

CLASP  does  not  have  any  built-in  input/output  operations  because of the 
wide  differences  in  the  input/output  characteristics of aerospace  computers, 
together  with  their  very  application-dependent  nature.  Their  absence is  
justified  by  experience  with  other  special-purpose  higher  level  languages: 
regardless of what  may  have  been  specified  in  the  language,  actual  imple- 
mentations  differ  widely  because of differing  application  needs.  Input  /output 
operations  are  accomplished  in  CLASP  by  lapsing  into  direct  code  and  making 
use of hardware  declarations. 

CLASP  does  not  have  the  built-in  mathematical  functions - -  sine,   arc-  
tangent,  etc. - -  common to other  languages.  Although  these  are  present  in 
the  base  language,  SPL,  they  were  eliminated  in  defining  CLASP  because 
they would introduce  unacceptable  inefficiencies:  to  implement  them, i t  would 
be  necessary  to  prepare  either a general  subroutine  package  containing all 
functions  or  individual  subroutines  for  each  function.  The  general  package 
would be  inefficient i f  only a few  functions  were  required  by a particular  appli- 
cation  program,  and  the  individual  subroutines  inefficient i f  most  functions 
were  required.  These  inefficiencies  are  further  compounded when such  sub- 
routines  are  required  with  fixed-point  input  and  output  parameters.  For  ex- 
ample,  the  fixed-point  arctangent  function  satisfactory  in  one  aerospace  appli- 
cation  program  may  be  unsuitable  in  another  because of differences  in  the  per- 
mitted  ranges of arguments,  accuracy  required,  and  allowable  execution  time. 
In  CLASP,  mathematical  functions  may  be  defined  by  the  same  means as any 
other  subroutine;  the p r o g r a m e r ,  however,  must  supply the procedure  speci- 
fying how the  function is to  be  calculated,  including  the  precision,  range of 
values,  etc. , for  i ts   arguments.   In  practice,  a l ibrary of such  functions  will 



be  maintained,  to  be  drawn  from as required  for  any  specific  program,  with 
additions  to  the  library  being  made as a need  for  function  subroutines  with 
particular  properties  occurs. 

Compared  with  SPL,  CLASP  has  many  other,  although  less  significant 
simplifications.  Such  things as status  variables,  table  declarations,  qualified 
named  variables,   matrix  inversion, and  notational  substitution  directives  have 
been  deleted.  The  conditional  statements,  allowable  subscript  expressions, 
and  assignment  rules  have  been  gr.eatly  simplified.  Together  with  the  additions 
discussed  above,  these  simplifications  make  CLASP a language  that  can do the 
job  in  the  aerospace  programming  area  and  can  be  implemented  for  the  com- 
puters of today  and  the  near  future  without  great  expense. 

12 

111 I I  I II I II I I  I1 I I 1 1 1 1 1 1 1 1  .I ....,...., , ..... , ” 



PART I1 - PROGRAMMER'S REFERENCE MANUAL 

CLASP is divided  into  five  areas:  data  declaration,  formulas  and  assign- 
ment,  control,  subprogram  definition,  and  directives.  Each  major  area is 
composed of specific  features.  Those of the  data  declaration  area  are  used  to 
define  data  items, both singly  and  in  aggregations,  and  to  specify their attri- 
butes,  including  any  numeric  values. The data  items thus defined are   used  to  
construct  formulas;  using  assignment  statements, it is possible  to  change  the 
value of a data  item by assigning  to it the  value of an  evaluated  formula.  Con- 
trol  statements are used  to  indicate the sequence of execution  for the assign- 
ment  and  other  statements.  Subprogram  definition  statements  are  used  to 
define  areas of the program as subprograms,  making it possible  for  the  func- 
tions  they  perform  to be called  for at any  place  in  the  program.  Directives 
are  used  to  specify  compiler  functions  independent of the  procedures  that the 
program is to  perform. 

Following  general  information  pertaining  to  this  manual  and  to  CLASP  as 
a whole,  each  major  language  area  is  briefly  described,  each  such  descrip- 
tion  being  immediately  followed  by  detailed  descriptions of the  specific  lan- 
guage features  that  that  language  area  comprises. 

Metalanguage "_ used  in  format  descriptions. - -  The  metalanguage  defined 
in  Table I1 i s  used  in  describing  the  format of CLASP features. 

TABLE I1 
METALANGUAGE USED IN CLASP FORMAT DESCRIPTIONS 

Notational  Form  Example  Definition 

Uppercase  letters DECLARE A CLASP  primitive 

Lowercase  letters  identifier A class  of CLASP elements 

c In1 {, variable] 
2 
0 n2 

Repetitive  braces  allowing 
f r o m   n i  to  n2  repetitions of 
the  syntax  they  surround; 0 to 
1 repeti t ions  are  assumed i f  
values  are  not  specified  for 
n i  and  n2 

Stacked  symbols FIXED 
A 

One  and  only  one of the  alter - 
natives shown 

L 

13 



As  an  example of the use of this metalanguage, the following format 

DECLARE I INTEGER CONSTANT 1 PARAMETER 

I CONSTANT 
PARAMETER , identifier [=formula] 

{=formula 3 
\ W  

which describes  the  syntax of an  integer  i tem  declaration,  states  that   the 
declaration  must  begin  with  the  primitive  DECLARE,  be  followed by either 
the  primitive INTEGER o r  the  letter I, then  optionally  followed  by  the 
primitive CONSTANT o r  PARAMETER  and an  optional  field  with  an  equals 
sign  followed by a formula.  The  next  fields,  starting  with  the  comma,  are 
all enclosed  in  braces  which  have  the  limits 1 to w. This  means  that  there 
must  be  at  least  one  occurrence of the  enclosed  syntax  and  that  there is  no 
intrinsic  l imit  on the  maximum  number of occurrences  (although  any  particu- 
lar implementation  will  be  limited  by  compiler  capacities). One of the  many 
possible  declarations  satisfying  the  above  syntax is  the  following: 

DECLARE I, ABLE, BAKER  CONSTANT 

In  giving  format  definitions  and  examples of CLASP  code,  lines  typed 
indented  from a previous  line  represent  continuations of a statement;  lines 
not  indented  in  this  way  represent new statements. 

Program  structure.--A CLASP program  begins  with a START declarator.  - 
Immediately  following  are  the  data  declarations  that  constitute  the  program 
environment.  Following  the  last  such  data  decla.ration  are  the  imperative 
statements  and  directives  that  operate  on  the  declared  data  and  that  repre- 
sent  the  main  program.  Following  the  last  statement of the  main  program 
are  programmer-defined  procedures,   each of which may  contain  data  de- 
clared  locally.  Closes  may  be  declared  anywhere  in  the  source  program. 
The  last  statement  in  the  program is the  TERM  declarator. 

Character  set.  --The  CLASP  character  set i s  restricted  to  the  letters 
A through Z ,  the  numerals 0 through 9 ,  the  symbols t - * / , ( ) . ' $ = 
and a blank  character. 

Source  code  and  statement  formats. --It is  assumed  that  the CLASP source 
program  will be compiled  from  punched  cards;  however,  other  devices  can be 
used if  they  have  an  80-character  logical  record  length. 

Source  code  may  begin  in  any  column  from 1 to  72  but must not  extend 
past  column  72.  Column  73 is the  continuation  field  and is not  interpreted 

14 



I 

by the  compiler.  Columns 74 through 80 are  usually  used  for  card  numbering 
and  program  identification  and  are  similarly  not  interpreted  by  the  compiler. 

One statement  may  extend  for  more  than  one  coding  line,  and  there is no 
limit to  the  number of continuations  allowed  for  any  one  statement.  However, 
identifiers,  numerical  quantities,  operators,  and  primitives  must  not  be 
broken  between  lines. If column 73 is blank,  the  compiler  assumes  that  -the 
next  line of coding is the  beginning of a new statement. If i t  is  not  blank,  the 
current  Statement is continued  to  the  next  card.  For  purposes of continuing 
literal  text,  column 72 is considered  to be followed by column I of the  con- 
tinuation  line. 

M0r.e  than one statement  may  be  placed  per  line by  using a $ terminator 
between  statements. 

Blanks  between  elements  may  be  inserted  or  omitted as desired  provided 
that  their  insertion  or  omission  does  not  result  in  the  creation  of'new  and 
unwanted identifiers,  numbers,  or  primitives.  For  example,  the  following 
may  be  written  with  or  without  blanks: 

COUNT t 1 
2 + 5  
SIX / (TEN t 2)  

while  the  following  must  be  written  with  blanks  where  indicated  by lb: 

DECLAREHFIXED, ABLEP 24 6 10 
Ak5EQbO 

Identifiers.--Identifiers  provide a means of referring to a specific  data 
i t em,   a r ray  of data  items,  statement,  procedure,  etc.,  and  are  defined by 
the  programmer.  The  format  descriptions of each  language  feature  describe 
how identifiers  are  defined  and  used. CLASP identifiers  must  begin  with a 
le t ter  which m a y  be followed by from 0 to 7 le t ters  o r  digits. 

Primitives.--CLASP  primitives  cause  certain  actions  to Occur or  they 
serve as a guide  in  the  analysis of the  syntax. A complete  list of primitives 
is  given  in  Table Ill. In  this  table,  an  asterisk is used  to  indicate  reserved 
words,  that i s ,  primitives  that  may not be  used as p r o g r a m e r - d e f i n e d  
identifiers.  Primitives  not  marked  with  an  asterisk  may also be  used as 
identifiers . 

Comments.--Except  in  literal  text, 
in  the  source  program  where a blank is 

comments  may  be  inserted  anywhere 
permitted. A comment is delimited 

15 

L 



TABLE 111 
C  LAS P PRIMITIVES 

An asterisk  indicates  reserved  words that may  not be used as 
programmer-defined  identifiers. 

A 
*ABS 
*AND 

B 
BOOLEAN 

*BY 
*CLOSE 

CONSTANT 
*COUNT 
*DECLARE 

DIRECT 
*ELSE 

*END 

$‘ENDALL 

*EQ 
*EQUIV 
*EXIT 

F 
*FALSE 

FIXED 
FLOATING 

*FOR 
*GOTO 
*GQ 
*GR 

HA.RDWARE 
I 

*IF 
INDEX 
INLINE 
INTEGER 

*LAND 
* LIM 

Fixed-point  type  declarator 
Absolute  value  function 
Boolean AND operator 
Boolean  type  declarator:  binary  constant  indicator 
Boolean  type  declarator 
Loop  statement  step  size  indicator 
Close  declarator 
Data  item  attribute 
Start  delimiter  for  timing  directive 
Data  item  declarator 
Start  delimiter  for  direct  code 
Start  delimiter  for  ELSE  statement  group  in  conditional 

End  delimiter  for  conditional  and  loop  statement  groups 

End  delimiter  for all conditional  and  loop  statement 

Relational  operator: is equal  to 
Boolean  equivalence  operator 
End  delimiter  for  chronic  statement,  procedures, 

functions , and  closes 
Floating-point  type  declarator 
Boolean  constant  stored  internally  as 0 
Fixed-point  type  declarator 
Floating-point  type  declarator 
Start  delimiter  for  loop  statement 
Unconditional  transfer  statement 
Relational  operator: is greater  than  or  equal to  
Relational  operator: is greater  than 
Hardware  register  operand  declarator 
Integer  type  declarator 
Start  delimiter  for  conditional  statement 
Index  register  assignment  declarator 
Procedure  attribute 
Integer  type  declarator 
Location  constant  indicator 
Bitwise  logical AND operator 
Limiting  function 

statement 

and for direct  code 

groups  not  yet  terminated 



TABLE 111 
CLASP  PRIMITIVES 

( continued) 

An asterisk  indicates  reserved  words that may  not be used  as  
programmer-defined  identifiers. 

*LOCK 
*LOR 
*LQ 
'k LS 
*LSH 
*LXOR 
*NOT 
*NQ 
0 

*OFF 
*ON 

OPTIMIZE 
*OR 
*OVERLAY 
*PACK 

PARAMETER 
*PROC 
*REM 
*REMQUO 

R ND 
*RSH 
*. S 
*SIC 
*SIGN 

SPACE 
*START 
*STOP 

T 
TEMP 

*TERM 

TEXT 
*THEN 

TIME 
*TO 

Inhibit  directive 
Bitwise  logical OR operator 
Relational  operator: is less than or  equal  to 
Relational  operator: is less   than 
Logical  operator:  left  shift 
Bitwise  logical  exclusive OR operator 
Boolean  negation  operator 
Relational  operator: is not  equal  to 
Octal  constant  indicator 
Boolean  constant  stored  internally as 0 
Boolean  constant  stored  internally  as I; start delimiter 

Optimization  directive  start  delimiter 
Boolean OR operator 
Storage  allocation  declarator 
Packing  procedure 
Data item  attribute 
Procedure and  function  declarator 
Remainder  function 
Remainder-and-quotient  procedure 
Rounding function 
Logical  operator: r igh t  shift 
Scaling ope rator  
Start  delimiter  for  optimization  exemption  directive 
Sign-determination  function 
Storage  space  optimization  directive 
Start   statement;  first statement  in a CLASP  program 
Stop  statement;  halts  program  execution 
Textual ty-pe declarator 
Data  item  attribute 
Termination  statement;  last  statement  in a CLASP 

Textual  type  declarator 
Start delimiter  for THEN statement  group  in  con- 

Execution time optimization  directive 
Loop  statement limit indicator;  inhibit/enable  statement 

for  chronic  statement 

program 

ditional  statement 

delimiter 

17 



TABLE 111 
CLASP  PRIMITIVES 

( c ontinue  d) 

An asterisk  indicates  reserved  words that may  not be used as 
programmer-defined  identifiers. 

*TRACE 
*TRUE 
*UNCOUNT 
*UNLOCK 
*UNPACK 
*UNPACX 
* UNSIC 
*UNSPACE 
*UNTIME 
*UNTRACE 
X 

Start delimiter  for debugging  directive 
Boolean  constant  stored  internally  as 1 
End delimiter  for  timing  directive 
Enable  directive 
Unpacking  function 
Sign-extended  unpacking  function 
End  delimiter  for  optimization  exemption  directive 
End  delimiter  for  storage  space  optimization  directive 
End  delimiter  for  execution  time  optimization  directive 
End  delimiter  for  debugging  directive 
Hexadecimal  constant  indicator 

18 



by  double  apostrophes  at  its  beginning  and  end,  and is ignored by  the  compiler. 
For  example 

IF I'CURRENT1f RANGE GR "GREATER THAN  MAXIMUM!' 
LIMIT 

shows two comments  embedded  in  one  statement.  Since  comments  are  in- 
terpreted as blanks,  to  the  compiler  the  statement  reads 

IF RANGE GR LIMIT 

Numbering  conventions.--The  bits of a word  are  numbered  consecutively 
from  left   to  r ight,   the  f irst   such  bit   ( the  sign  bit)   being  bit  0 and  the  last 
being  the  least  significant.  Similarly, six bytes of text would be  numbered 
0 to 5, with  the  leftmost  being  byte 0 and  the  rightmost,  byte 5. 

Each  dimension of an   a r r ay  is  numbered  consecutively  from 0 through 
the  number of elements  in  the  dimension  minus i.  

All numbers  are  interpreted to be  decimal  numbers  unless  otherwise 
indicated  by  the  programmer. 

Sample  program.--A  sample CLASP source  program  listing  is  reproduced 
on page 20. 



N 
0 

S A M P L E   P R O G R A M  

9 

9 

START 
T P I S  I S  A CLASP P R C G R A r .  TO PERFORM NUMERICAL  INTEGRATION  USING  THE * 
TRAPEZOIGAL  RULE.  THE PROGRAK CALLS  FUNCTION  TRAPINT WHICH RETURFiS 
THE VALUE CF THE  INTEGRAL ANI3 STORES I T   I N   I T E M  RESULT. ( 1  

CECLARE F I . X E D ~ O R G I K A T E ( 1 C )  24 10, 9 

RESULT 2 4  8 
CECLARE  BOCLEAKVERROR =FALSE 
E C L P R E  T E X T w M E S S l  =' 

DIRECT 
I '  A DIRECT CODE PROCEDURE  TC INPUT 10 SAKPLE  POINTS FROM A 

FUNCTION  INTO A R R A Y  CRCINATE SHOULC APPEAR  HERErALTHOUGli 
I T   k I L L  NOT BE COCEE I '  

EKE 
RESULT = . T R A P I N T C C R D I N A T E , 1 0 1 C . C 1 2 5 A l 2 )  
IF ERROR 
THEN M E S S 1  = lERROR I N  IWTEGRATIQN'  
ENC 
STOP 
PROC .TRAPINT(Y;N,H) 
CECLARE INTEGER,I,N 
GECLARE  FIXED, Y I N )  24 10, "THE A R R A Y  OF ORDINATES" * 

H 24 129 "THE  STEP SIZE OF THE ABSCISSA"* 
TRAPINT 24 8 9  "THE  VALUE OF THE INTEGRAL" * 
P A R T I A L  TEMP " A  LOCAL  VARIABLE TO THE  PROC" 

IF N L S  2 THEN ERROR = TRUE $ GOTG E X I T I N T  END 
PARTIAL = (0.5 * I Y ( 0 )  + Y ( N - 1 ) ) )  , S ( 2 4 r 1 0 )  
I \ . = N -  2 
FOR I = 1 TO N 

END 
TRAPIHT = PARTIAL * H 

P A R T I A L  = P A R T I A L  + Y ( I )  

E X I T I N T ,   E X I T  
TERY 



DATA DEC L. ARATIO IN 

The  data  environment  in  which a  CLASP program  operates is described 
by means of data  declarations.  Data-may  be  represented  in two forms, as 
constants  and as data  i tems. A constant is implicitly  declared as to its type 
and  other  attributes by its occurrence  in  the  executablepart  ofthe  program. A 
data  item  must  be  explicitly  declared at the  beginning of the  program  or  pro- 
cedure  in  which it is used;  the  data  declaration  gives it an  identifier  which 
allows  referencing it, and  also  assigns  to it a type to  indicate  to  the  compiler 
how it should  be  manipulated  in  subsequent  processing.  Constants  and  data 
items  can  contain  fixed-point,  integer,  Boolean,  or  textual  information. 
Floating  point is also  allowed  for  computers  having  hardware  floating-point 
arithmetic  commands. 

Aggregations of several  similar  and  related  data  items  may  be  declared 
as arrays  in  which  individual items or  groups of items are   referenced by the 
use of the  array  identifier  and  appropriate  subscripts  or  implicitly  declared 
subscripts.  Group  declarations  may  be  used  to  define  groups of data  items 
a s  having a common  identifier  as  well as independent  identifiers  for  each 
separate  item.  Index  declarations  are  provided  to  permit  the  efficient  alloca- 
tion of machine  registers  to  subscripts.  Finally,  declarations  controlling 
hardware  assignments  and  memory  allocation  are  provided. 

21 



Fixed-point  Constants 

Fixed-point  constants are used  to  specify  the  numeric  values of unchang- 
ing  and known decimal  numbers  that   are  used by the CLASP program.  Fixed- 
point  constants  must  be  expressed  in  decimal  and  may  have  an  optional  sign, 
an  exponent,  and a fractional  bit  specification. 

Format  

The d ' s  represent  strings of decimal  digits. d l  and d2 are ,  
respectively,  the  integer  and  fractional  parts of the  constant. 
The  optional E indicates  that  the  constant  has  an  exponent. 
The {?} d3  following the E is the  power of 10 by which  the  con- 
stant  is  multiplied  (for  example, 3000, which  can be expressed 
in  scientific  notation  as 3.0 X I O 3 ,  can  be  expressed  in CLASP 
a s  3.OE3). The  optional A indicates  that  the  constant  has a 
fractional b i t  specification. A minimum of f? ]  dq bits  will be 
allocated by the  compiler  to  the  fractional  part of the  constant. 
Note that no blanks  may  appear  within a constant. 

If the  nurriber of fractional  bits  is  not  specified,  the  compiler  will  assign 
a scaling  consistent  with  the  context of the  constant's  use.  In  general, one 
computer  word  will be allocated  to a fixed-point  constant. If one is   used  in  
a context of higher  precision  operations,  its  precision  will be compatible. 

If the  number of fractional bits is specified,  the  compiler will locate  the 
radix  point  according  to  the  following  criteria: 

( i )  If d4 is positive o r  zero,  the  radix  point will be at   least  d4 bits 
to  the  left of the  low-order end of the  word. 

( 2 )  If d4 is  negative,  the  radix  point  will be no more  than d4 bits to 
the  right of the  low-order end of the  word.  (Negative  fractional 
'bit specifications  are  explained  in  more  detail  under  fixed-point 
declarations,  page 34. ) 

(3) If dq is greater  than  the  computer  word  size,  the  radix  point  will 
be  outside  the  word to  the  left. 

22 



Fixed-point  Constants 

Example s 

Acceptable Not Acceptable 

+123. 523-6  (no  decimal point) 
00 56,974.0  (comma not  allowed in constant) -. 5E- 10 32. E-.  5 (decimal  point  not  allowed in exponent) 
3.1416A14 
6.02E23A-60 

23 



Floating -P oint  Constants 

Floating-point  constant  capability is provided  for  aerospace  computers 
having  hardware  floating-point  arithmetic  operations;  otherwise  fixed-point 
constants  must  be  used.  The  floating-point  constant,  which looks exactly  like 
the  fixed-point  constant  except  that a fractional  bit  specification  may  not  be 
written,  may  be  distinguished  from a fixed-point  constant by the  context of its 
use. 

Format  

The  d's  represent  strings of decimal  digits.  di  and di! a r e ,   r e -  
spectively,  the  integer  and  fractional  parts of the  constant. The 
optional E indicates  that  the  constant  has  an exponent.  The 
{SI dg is the  power of  10  by which  the  constant is  multiplied. 
Note that no blanks  may  appear  within a constant, 

The number of words  allocated to the  constant  depends  upon  the  floating- 
point  format of the  particular  implementation. 

24 



! ?  

I I Integer  Constants 

Integer  constants are used  to  specify  numeric  values  in  those  cases 
where  the  values  are known and  unchanging  integers.  They  are  most  frequent- 
ly  used as indices, as values  for  setting  indices  and  counters,  and as coeffi- 
cients  in  equations. An integer  constant  consists of an  optional  sign  followed 
by a string of decimal  digits. 

Format  

12 } decimal-digits 

Examples 

Acceptable Not  Acceptable 

154 154.0 (decimal  point  not  allowed) 
-2095  -99E10  (exponent  not  allowed) 
"1 12A7 (fractional b i t  specification  not  allowed) 

The  range of integer  constants,  an  implementation-dependent  restriction, 
is limited  to  plus  or  minus  the  highest  memory  address of the  object  computer. 
However,  the  ability of fixed-point  constants  to  assume  only  integer  values 
may  be  used  to  enter  values of greater  absolute  magnitude i f  desired. 

25 



Boolean  Constants 

Boolean  constants  are  used  to  specify  either of two possible  Boolean 
values in a readable  form. 

Format  

TRUE  FALSE 
ON or  O F F  

TRUE  and ON a r e  both  stored  internally as the  integer 1; FALSE  andOFF, 
as the  integer 0. Whether  TRUE o r  ON (or  FALSE  or  OFF) is used  makes  no 
difference  in  program  execution;  the  choice  should be made so as to  promote 
program  readability. 



1. Textual  Constants I 
Textual  constants  are  used  to  specify  the  literal  text  to  be  included  in  the 

program.  They  are  specified by a string of characters  surrounded by primes. 

Format  

{decimal-integer  'character-  string1 

All  machine-readable  characters  are  allowed  in  the  string.  The 
optional  integer  specifies  the  number of characters  in  the  str ing 
and is required  only when a pr ime is one of the  characters  im- 
bedded  in it. 

Examples 

(1) 13.141591 

( 2 )  PUSH  DESTRUCT  BUTTON, THEN HOLD EARS' 

(3) 12 'ERROR IABLE' 1 

This is a 12-character  constant  with  imbedded  primes. 

27 



Binary,  Octal,  and 
Hexade  cim a1 Con stant s 

Binary,  octal,  and  hexadecimal  constants  are  used  to  specify  the  exact 
machine  bit  configurations of values  used by the  program.  They  are  con- 
sidered  to  have  the  radix  point  immediately  to  the  right of the  last  digit  writ- 
ten;  the  radix  point  itself  should  not  be  written.  Blanks  should  not  appear 
within  these  three  types of constants. 

Format  (Binary  Constants) 

Blbinary-digits! 

Each  binarydigit,  at  least one of which  must  appear  between  the 
primes,  is represented by a 0 o r  a 1 and is equivalent  to  one  bit 
of a computer  word. 

Examples 

(I) B10ilOii1 

This  is  equivalent  to  the  decimal  value 27. 

(2) Bli 11 11 11000000~ 

Ofoctal-digits' 

Each  octal  digit,  at  least  one of which must  appear  between  the 
primes,   is   represented by the  numerals 0 through 7 and is 
equivalent  to  three  bits of a computer  word. 

Examples 

(1) 0'1000' 

This  is  the  octal  equivalent of the  decimal  value 5 12. 

28 



I Binary,  Octal,  and 
Hexadecimal  Constants I 

Format  (Hexadecimal  Constants) 

XQexadecimal-digits1 

Each  hexadecimal  digit, at least  one of which must  appear 
between  the  primes, is represented by the  numerals 0 through 9 
and  the  letters A through F and is equivalent  to  four  bits of a 
computer  word. 

Examples 

(1) X'I2C' 

This  represents  the  hexadecimal  equivalent of the  decimal  value 
300. 

(2) XllB33521 



. .  , . . .  

Location  Constants 

Location  constants  permit  direct  reference  to  the  memory  address of a 
data  i tem  or a labeled  statement. 

Format  

L ' i tem-name' 
'statement-label. ' 

Note  that  statement  labels  are  followed by a period  and  item 
names   a re  not. 

The  location  constant  becomes  identical  to  the  numeric  value  which  rep- 
resents  the  memory  address of the  specified  identifier  or,  for  multiple-word 
items,  to  the  value  representing  the  address of the first word of the  specified 
identifier. If the  identifier is modified by a  subscript,  the  value is the  address 
of the  array  element  referenced.  Only  integer  constants  are  allowed as sub- 
scripts  in  location  constants. 

Examples 

(1) L'AB LE 

This  constant  represents  the  memory  address of ABLE. 

LlBETA(4)' 

This  constant  represents  the  address of the  fifth  element of 
BETA,  which is located at BETAt4 i f  BETA is a single-word 
array,   at   BETAt8 i f  BETA is a double-word  array,  etc. 

This  constant  represents  the  address of the first instruction of 
the  statement  labeled START 1. 

30 



Data Declarations 

Data declarations  are  used  to  define  data  items with their  associated 
identifiers  and  to  describe  the  types  .and  attributes  affecting  their  subsequent 
manipulation. All  data  items  must be declared  before  any  manipulative  refer- 
ence  to  them. 

A single  data  declaration  may be used  to  describe one or   more  i tems of 
a single  data  type;  the  attributes  comrnon  to a group of items  may be factored 
in  the  declaration  to  reduce  the  amount  of,writing  required. 

Format  

DECLARE  type  {attributes ] [, identifier  {attributes ] ] OD 1 

Each  identifier  represents a data i tem which is declared  as having  the 
type  specified.  The  attributes  common  to  a  group of data  items being declared 
with  a  single  statement  are  written  immediately  after  the type  field.  The  at- 
tributes  pertaining to  a specific  item  within  the  common  group  are  written 
immediately  after  the  ideatifier of that  item. If any  conflict  exists  'between 
the c o m o n  attribute  declaration  and  the  specific  item  declaration,  the  latter 
prevails. The attributes  may  appear  in  any  order  within a factored  declara- 
tion  as  well  as  in  specific  item  declarations. 

The  type  field  may be specified: 

FIXED o r  A for  fixed-point  data 

FLOATING or F for  the  optional  floating-point  data 

INTEGER or I for  integer  data 

BOOLEAN o r  B  for  Boolean  data 

TEXT ox T for  textual  data 

Those  attributes that are  specific  to a particular data type are  discussed 
in  the  description of that type.  Those  global  attributes  that  are  applicable to  
all data types  are  the CONSTANT, PARAMETER,  and preset  value  attributes, 
and are  discussed  here.  

The attribute CONSTANT is used  for  items  whose  values do  not  change 
during  program  execution  and  are known at  compilation  time.  Such  values 
a r e  supplied  via  a  preset  value  attribute  in  the  data  declaration.  Recompila- 
tion is required if the  value of a data  item  declaredwith CONSTANT is changed. 

3 1  



I 

Data  Declarations 

The  attribute  PARAMETER  is  used f o r  i tems whose  values do  not  change dur- 
ing program  execution but may  not be precisely known until  the  object  program 
i s  loaded. A change  in  value  for  a  data  item  declared  with  PARAMETER  will 
not  require  recompilation if such  a  change  is  consistent with the  other  attri- 
butes of the  item. 

Both  the  constant  and  parameter  items  may be allocated to read-only 
storage by the  compiler.  The  attribute CONSTANT allows  the  compiler  to 
generate  optimum  code  for  handling  constant  values  such  as  an  integer  which 
is a  power of 2 and is used  as  a  divisor. If such  an  item is declared  with 
CONSTANT, the  compiler will generate  a  shift  instruction  that  is  faster  than 
the  more  general  divide  instruction  that would have  been  used if  the  item  had 
been  treated  as  a  variable o r  a  parameter. If a  data  item is not  declared  with 
CONSTANT o r  PARAMETER, it is assumed  to be a  variable,  changeable  dur- 
ing program  execution  and  allocated to read/write  memory. 

A preset  value  must  appear i f  the  attribute CONSTANT i s  used.  The 
effect of the  preset  value  attribute is to preset  data  items  to  a  constant  value 
determined by a  specified  formula. 

Format   (Prese t  Value Attribute) 

= formula 

Preset  formulas  for  numeric  declarations  are  operands  sepa- 
rated 'by the  operators +, -, *, /, o r  **. Evaluation of the 
formulas is carr ied out  in  the  same  manner  as  that of ordinary 
statement  formulas.  Parentheses  may be used  to  clarify  the 
order  of evaluation.  The  operands  must be CLASP  numeric 
constants o r  item  names which  have  previously  been  declared 
CONSTANT with  a  preset  value.  Boolean  and  textual  items  may 
be  preset only with  Boolean  and  textual  constants,  respectively. 

Declaring  a  numeric  item  with CONSTANT permits  the  programmer to 
symbolically  reference  the  item's  value  in  any  succeeding  preset  formulas, 
providing  ease of program  modification  when  changing  identical  preset  values 
used  several  times. All  preset  formulas  are  evaluated  at  compile  time; no 
object  code is generated  for  them. 

32 



I 

= Data  Declarations 

Example  (Preset  Value) 

M and K are   declared as constant  integer  items  preset  to 
24 and 48, respectively. L is declared as an  integer  item  pre- 
set  to (24+48) / 12 = 6 .  TWOlO is declared as an  integer  item 
preset to 2" = 1024. 

33 



Fixed-point  Declarations 

The  fixed-point  data  declaration  specifies  the  criteria  to  be  used  by the 
compiler  in  allocating  fixed-point  data  items  to  memory  and  using  them  in 
computations.  Whenever  the  data  declaration is such as to  give  the  compiler 
a choice of possible  radix  point  locations, it will choose  that  location  which 
minimizes  the  amount of rescaling  necessary  to  perform  calculations  with  the 
item. 

The  format of the  fixed-point  data  declaration is similar  to  that of the 
general  data  declaration,  with  the  addition of specific  attributes  peculiar  to 
this  type. 

Format  

FIXED 
CONSTANT { TEMP 1 

CONSTANT 

DECLARE A { {ni 3 n2 3 PARAMETER {=formula 3 

[ TEMP 1 I i  OD 

, identifier [ Inl ] n2 ] PARAMETER  {=formula ] 

nl  and  n2  are  integers  indicating,  respectively,  the  minimurn 
number of total  bits  to  be  allocated  to  the  item  and  the  minimum 
number  to  be  reserved  for  the  fractional  part;  the  compiler 
locates  the  radix  point  for  the  item  according  to  the  values  speci- 
fied.  The CONSTANT and  PARAMETER  attributes  are as dis- 
cussed  in  the  previous  section.  The  TEMP  attribute is used  to 
prevent  the  compiler  from  rescaling  items,  that  is,when  it  is 
desired  to  employ  an  item  for  temporary  storage of fixed-point 
values  having  many  different  scalings. When a TEMP  item 
appears as an  element of a formula, it is assumed  to  have  the 
same  scaling  as  the  closest  previous  formula  to  which  the  vari- 
able  specified by the  declarationls  identifier  was  assigned. 
(TEMP is discussed  further  in  the  section on fixed-point 
assignment . ) 

If n l  and n2 a r e  not  specified,  the  compiler will allocate one full  word to 
the  item,  with no fractional  bits. If only  one integer  appears  in  the  declara- 
tion, it will be considered  tobe n , and n i  will be assumed  to be the  com- 
puter's  word  size. If 'both ni anc?n2 appear  in  the  declaration,  ni  must be 
coded first. 

34 



Fixed-point  Declarations 

The  fractional  bit  specification,  n2,  may  be  negative  or  greater  than  ni, 
indicating a radix  point  outside  the  number of bits.  The  number of words, m, 
allocated  to a fixed-point item will be.the  greatest  integer  not  exceeding 
(ni  t IT - I)/IT, where IT is the  number of bits  per  computer.word. If the bits 
in the item are  ordered  f rom  the left as 0 to  the  right as m. TF - I ,  this  num- 
bering  scheme  may  be  extended  by  assigning -1, -2, -.3, etc.,  to  the  imagin- 
ary  bit  positions  to  the left of the  item  and m T, m e IT t 1, m g IT + 2, etc. , 
to  the  imaginary  bit  positions  to the right of the  item.  The  radix  point  may  be 
placed  at  any  position  from  the  right of bit n i  - "q - 1 to  the  right of bit 
m IT - n2 - 1. In  the  case  where  nf = m TF, the  radix  point  will  be  placed at 
position  ni - n2 - 1. Thus if it is desired  to fix the  location of the  radix point, 
the  total  bit  specification,  ni,  must  be a multiple of the  computer  word 
size, IT. 

It is important  that  the  number of bits   declared  via  ni  and n2 do  not  ex- 
ceed  the  number  actually  required to  handle  the  expected  range  and  the  required 
precision  for  any  item.  Specifying  only  the  necessary  number  will  provide  the 
compiler  with  the  flexibility  to  choose a set of scalings  that  meets  the  declared 
minimum  requirements  and at the  same  time  minimizes  manipulation of data 
items.  For  example,  assume  that  for  a  specific  variable  the  largest  magni- 
tude  is  known to  be 3 0 , 0 0 0  and  the  allowable  tolerance of data  representation 
is 0 . 0 5 .  It takes at least  15 bits  to  represent  the  integer  portion (16, 3 8 3  is 
the  largest  integer  representable  with 14 bits; 32, 767 can  be  represented  with 
15 bits)  and at least  5 bits  for  the  fractional  part ( . 03125  is  the  smallest  non- 
zero  fraction  which  can  be  represented  with 5 bits). All  numeric  quantities 
a r e  signed, so that 1 bit is required  for  the  sign.  The  declaration  might be: 

DECLARE  FIXED,  VAR 2 1  5 

If the total  number of bits is omitted f rom the  data  declaration,  a 
f u l l  word is assumed  necessary  to  represent  the  quantity.  In  this  case,  the 
compiler would have no choice  but  to  place  the  radix  point after bit 18.  

35 



Fixed-point  Declarations 

Examples (assume 24-bit  word  size) 

DECLARE A PARAWTER,  
RADIUS -4 CONSTANT = 1.6032788E8, 
ORBIT, 
KACCEL 15 36 ~ 4 . 6 5 7 1 3 - 5  

RADIUS is declared as a fixed-point  constant  (overriding  the 
factored  PARAMETER  attribute)  preset  to  1.603278838. A f u l l  
word is required  for  this  item  (since  the  total  bit  specification 
is missing),  with  -4  bits  reserved  for  the  fractional  part.  The 
radix point  will  be  located 4 bits  to  the  right of the  computer 
word. ORBIT is  declared as a full-word  fixed-point  parameter 
with  no  fractional  bits.  KACCEL is declared as a fixed-point 
parameter  preset   to  4.657lE-5  ( this  may  be a nominal  value 
which  can  be  changed at load  time).  Fifteen  total  bits  are  re- 
quired,  with at least  36 reserved  for  the  fractional  part.  The 
compiler  may  place  the  radix  point  anywhere  from 12 to  21  bits 
to  the  left of the  word. 

DECLARE  FIXED  TEMP,  REI,  RE2,  RE3,  RE4 

REI,  RE2,  RE3,  and  RE4  are  declared as fixed-point  items 
having  the  TEMP  attribute. No scaling  information  is  given  in 
the  declaration,  since it will be determined .from formulas 
assigned  to  them  in the program.  Single  words  are  allocated 
for  each  item. 

DECLARE  FIXED 48 0 TEMP,  REl,  RE2,  RE3,  RE4 

This is similarto  Example (2) but  includes  bit  specifications 
because  double-precision  TEMP  items  are  required.  However, 
the  TEMP  attribute  tells  the  compiler  to  ignore  scaling  informa- 
tion  derived  from  the bit specification. 

36 



I 

" 

loating-Point  Declarations 

The  floating-point  data  declaration is used  to  describe  floating-point  items 
when  the  hardware  capability is provided.  It is similar  to  the  fixed-point  dec- 
laration  except  that a precision  specification  replaces  the  total  and  fractional 
bit  specifications. 

Format  

DECLARE FLOATING 
F {precision? 

CONSTANT 
'PARAMETER , identifier  {precision 1 f*orrnula 1 
c 

The  precision  specification is a decimal  number  indicating  the 
number of decimal  places  required. 

The  compiler  will  allocate  the  item  to a single  computer  word  (single 
precision)  or  to two computer  words  (double  precision)  based on the  precision 
specified. If not  specified,  single  precision is assumed. 

Examples 

(1) DECLARE F, DISTANCE, SPEED 

DISTANCE and  SPEED are  declared  to  be  single-precision 
floating-point  items. 

(2) DECLARE  FLOATING,  ABLE 7 

Item  ABLE  will  have  at  least  seven  decimal  digits  precision  in 
its  floating-point  representation. 

37 



I Integer  Declarations I 

Integer  data  items are used  for  those  quantities  which  can  assume  only 
integer  values  less  than a certain  limit,  for  example,  counters,  program 
logic  path  indicators,  and  indices  for  arrays.  They  correspond  numerically 
to  similarly  declared  fixed-point  items  with  zero  fractional.  bits.  To  main- 
tain  object  code  efficiency,  the  integer  declaration  should  be  used  where 
possible  instead of the  more  general  fixed-point  declaration  in  which  the  size 
of the  item is controlled by the  declaration.  The  largest  allowable  magnitude 
of an  integer  item is equal  to  the  highest  memory  address of the  computer; 
this  limiting  size is implicit  in  the  declaration.  Although  integer  items  are 
allocated  to a full  word  (which  may  be  bigger  than  the  maximum  allowable  in- 
teger  size),  integer  calculations  may  be  truncated  from  the  high-order end of 
the  allowable  size owing to  the  allocationof  integer  data  to  integer-  sized  regis- 
t e r s  if the  computer  has  them.  Thus  unpredictable  results  may  occur if in- 
tegers  are  allowed  to  exceed  the  maximum  value. 

Format  

DECLARE INTEGER f CONSTANT 
I I P A R A ~ T E R  1 {=formula 3 

, identifier  {=formula 3 

(1) DECLARE I = 0, K, L, M = 1, N 

K,  L ,  and N are   declared as integer  items  preset t o  0, and M 
as an  integer  preset  to 1. 

(2) DECLARE  INTEGER CONSTANT, CLl  = 9, CL2 = -100 

CLl  and CL2 are  declared  as  integers  with  constant  values of 
9 and -100, respectively. 

38 



Boolean  Declarations 

Boolean  data  items  are  used  chiefly  in  program  logic as path  indicators 
and  in  input/output  routines as signals of a Boolean  status.  Boolean  items  can 
take  on  two states: TRUE  (or ON) and  FALSE  (or  OFF),  represented  inter.- 
nallyas  the  integers 1 and 0, respectively. A full  word is allocated  to  these 
items,  which  use  only  the  global  attributes. 

Format  

DECLARE BOOLEAN CONSTANT 
B PARAMETER {= formula 

CONSTANT 
PARAMETER , identifier {= formula 3 

Example 

DECLARE BOOLEAN,  ORBIT, GO CONSTANT = TRUE, 
NOGO  CONSTANT =FALSE, OVFLO = 0 

ORBIT is declared as a Boolean  item; GO and NOGO are  declared 
as  constant  Bsolean  items  having  the  values TRUE and FALSE, 
respectively; OVFLO is declared as a Boolean  item  preset  to 0 
(FALSE). 

39 



Textual  Declarations 

Textual  data  items  are  used  to  contain  alphabetic,  numeric,  and  special 
character  strings  in  the  character  code of the  computer  for  which  the  program 
is written.  Thus  they  provide  for  the  inclusion  and  manipulation of non- 
numeric  quantities, f o r  example,  a  keyboa.rd  input  signal  that  must be decoded 
o r  an error message to  be  sent to a  pilot  display. 

Format  

DECLARE TEXT {number-of-bytes] 1 fdormula 3 

OD { , identifier  {number-of-bytes 1 ‘ONSTANT 1 { ~ o r m u l a ~ } l  
PARAMETER 

The  number-of-bytes  attribute is an  integer  indicating  the  num- 
ber  of characters  reserved  for  the  i tem. 

If the  number of bytes is not  declared  and a preset  value  is   present,   the 
item  will  have  the  same  number of bytes as the  preset  value. If both  the 
number of bytes  and  the  preset  value  are  missing,  the  number of bytes  per 
computer  word will be  reserved. 

Example 

DECLARE  TEXT, MESS1 80, MMI = ‘PUSH START! 

MESS1 is   declared as an  80-byte  textual  item. “I is declared 
a s  a 10-byte  textual  item  because its preset  value, PUSH 
START‘ , is 10 bytes  long. 

40 



Array  Declarations 

Array  declarations  are  used  to  define  groups of i tems having a related 
nature and  common  attributes.  The items are arranged  such  that  the  group 
may be referenced  by  an  identifier  which  designates  the  entire  array  and  the 
individual  elements  within  the  array  may  be  referenced by subscripts.  Each 
element of an  array  has   the type and  attributes  given  in  the  declaration.  The 
format  for  the  declaration is an  extension of that  for  single  item  declarations. 

Format 

DECLARE type  {attributes ] 

2 
0 {(integer-constant[,  integer-constant] ) ]{=constant-list] 

2 
0 (, identifier  [(integer-constant{,  integer-constant3 ) ] 

03 

{attributes 3 {=constant-list] 

The parenthesized  list of integer  constants  (the  dimension list) 
indicates  that  the  item 'being declared is an  array. The identifier 
i s  the array  name,  and  the  constant  list is the  mechanism  for 
presetting  the  elements of the array.  The  dimension  and  con- 
stant  l ists   are  treated  l ike any  other  attributes  and  thus  may be 
written  factored o r  may 'be written  uniquely fo r  each  identifier. 

Arrays  can  have  one,  two,  or  three  dimensions.  The  value of the first 
integer  in  the  dimension  list is the  number of rows;  that of the  second,  the 
number of columns;  and  that of the  third,  the  number of planes.  The  number 
of elements  in  the  array is the  product of all dimensions  in  the  list,  and  the 
number of words  reserved  for  the  array is the  number of words  per  element 
times  the  total  number of elements. 

If the  dimension list appears  in  the  factored  part of the  array  declaration, 
it applies  to all arrays  declared. If it appears  to  the  right of an  identifier, 
it applies  to  that  identifier  only,  and will override a factored  declaration. 

Individual  elements  in  an  array  may  be  preset as desired  using  the  con- 
stant list; its format  is an  extension of that  for  presetting  simple  items. 

41 



Array  Declarations 

Format  (Constant  List) 

={( 3 {repetition-factor ( 5 formula {> ') 

I 1: {repetition-factor (1 formula {) 3 [) } 

The  optional  repetition  factor is an  integer  indicating  the  number 
of times  the  following  formula' s value i s  to be repeated  in  the 
constant  list. The pair  of parentheses  surrounding  the  formula 
is   required only  when a repetition factor is  specified,  and  the 
pair of parentheses  surrounding  the  entire  list  is  required only 
when a c o m a  appears  inside  the  list. The formulas   are  of the 
same  format  as  those  used  in  the  preset  value  attribute. 

Beginning  at  .the  first,  each  element  in  the  array is preset  to  the  corre- 
sponding  value  in  the  constant  list.  For  one-dimensional  arrays,  the  corre- 
spondence betwee21 the  constant list and  the  elements is obvious.  For  two- 
and  three-dimensional  arrays,   the  preset   values  are  stored  in  the  order of 
the  array's  layout  in  memory.  All  arrays  are  stored  linearly  in  memory, so 
that  the  first  subscript of an  array  varies  most  rapidly,   the  last   subscript ,  
least   rapidly.   Thus,   two-dimensional  arrays  are  stored by columns  and 
three-dimensional  arrays by  planes  with  the  planes  stored by columns. 

Examples 

(1) The  following  array,  named MAT and  having  the  indicated  pre- 
set  values 

0 

Rows i 

2 

Columns 

0 I 2 3 

- 48 

is   declared by: 

42 



Array  Declarations 

DECLARE  INTEGER, MAT (3, 4) 
= (0, - 6 ,  -48, 3, 4, 6 ,  4(7), 5 9 ,  11) 

Each  element of the 3 X 4 array  holds  an  integer  value.  The 
value 7 is given a repetition.factor of 4. The  constant list pre- 
sets  the elements of MAT in  columns,  The  array's  memory 
arrangement will be: 

MAT(0,O) = 0 
. MAT( 1 , O )  = -6  

MAT(2,O) = -48 
MAT(0, I) = 3 
MAT(1, I) = 4  
MAT(2, 1) = 6 
MAT(O,2) = 7 
MAT(I,2) = 7 
MAT(2,2) = 7 
MAT(0, 3) = 7 
MAT( 1 , 3) = 59 
MAT(2,3) = 11 

(2) DECLARE  FIXED ( 3 ) ,  VELOC 17 2,  ACCEL 12 5 ,  
POS 48 6 = 3 ( 0 . 0 ) ,  XFORM(9) 24 10 

VELOC,  ACCEL,  and POS are  each  declared as three-element 
fixed-point  arrays, POS being  preset to 0. XFORM is declared 
a s  a nine-element  fixed-point  array,  overriding  the  factored 
three-element  array  specification. 

( 3 )  DECLARE r, ABC (4, 5 ,  31 20 

L 

The  array ABC has  three  dimensions of four  rows,  five  columns, 
and  three  planes.  Each  element  contains 20 characters of textual 
information. 

4 3  



Variable-dimension  arrays are used  to  allow  the  writing of a procedure 
that  has  several   arrays as actual  parameters,  the  individual  array  having 
different  dimensions.  For  example, a matrix  inversion  procedure  may  be 
developed  to  operate on an N X N fixed-point  matrix,  where N is a variable  that 
i s  supplied  to  the  procedure. N is fixed  for  any  particular  matrix  that is to  be 
inverted  but  is  different  for  different  matrices. A variable-dimension  array 
declaration  does  not  result  in  the  allocation of memory  locations;  it   provides 
the  mechanism by which  an array  identifier  without  subscript  value  limitations 
can  be  used  in  writing a procedure  and by which  linkages  can  be  made  to  fixed- 
dimension  arrays  that  are  allocated. 

A variable-dimension  array is specified by replacing  one  or  more of the 
integer  constants  in  the  dimension  list of an  array  declaration  with  the  names 
of simple  integer  items.  The  size of the  variable  dimension is the  value of 
the  integer at procedure  execution  time.  The  number of dimensions  may  not 
vary. 

Format  

DECLARE  type  {attributes 1 

I identifier , identifier 2 
constant , constant , identifier ( r 1,) [attributes 1 

The  identifiers  and  constants  in  the  dimension list must  al l   be 
of integer  type. If the  identifiers  in  the  dimension list have  not 
been  previously  declared,  they  will  automatically be declared 
as  integer. 

Examde  

DECLARE  FIXED,  TABLE (I, J, K) 

TABLE is   declared  as  a fixed-point  array  having  three  dimen- 
sions of size I, J, K, Assuming  this  declaration is made  in a pro- 
cedure  heading, I, J, K would be passed  as  input  parameters of 
the  procedure; TABLE  would be either  an  input o r  output 
parameter. 



Implicit  subscripts  are  used  to  minimize  the  writing  required when refer- 
encing  an  array  by  including  in  the  array's  dimension list the  names of integer 
variables  that  are  to  be  implicitly  defined  as  subscripts  for  that  array. 

Format  

DECLARE type  {attributes 3 

{(identifier  constant {, identifier  constant ] ) ] 2 
0 

I , identifier  {(identifier  constant 

{, identifier  constant ] ) ] {attributes ] 2 
0 

The  identifiers  and  constants  in  the  dimension  list  must be of 
integer  type. If the  identifiers  in  the  dimension  list  have  not  been 
previously  declared,  they  will  automatically  be  declared  as 
integers. 

Example 

DECLARE  F IXED,   ABLE  (R  3, C 3) 

ABLE is  declared as a 3 X 3 fixed-point  array  whose  row  and 
column  subscripts  will  be R and Cy  respectively,  whenever  the 
array  name  is   used  without  subscripts.  

The  use of implicit  subscripts is discussed  in  more  detail  in  the  section 
on  formulas  and  assignment  statements. 

45 



I Group  Declarations I 

Group  declarations  are  used  to  name  groups of single  data  items  such  that a 
group as a whole  can  be  referenced by its group  name  while its individual 
elements  may  be  referenced by their  particular  names.  The  elements of a 
group  can  have  different  attributes;  the  commonality  necessary  for  arrays is 
not required. 

A group  is  declared by labeling a data  declaration  statement. 

Format  

identifier.  data-declaration 

The  group  name is indicated by the  identifier,  which  must  be 
followed  by a period.  The  data  declaration  statement  can  be 
of fixed,  floating ( i f  available),  integer,  Boolean, o r  textual type. 

E x a m d e  s 

ABLE. DECLARE  INTEGER, A, B, C, D 

Group  ABLE  consists of four  integers. 

( 2 )  BAKER.  DECLARE  FIXED 24 10, E, F, G(1O) 

Group BAKER has  three  €ixed-point  items, one of which is a 
IO-element  array. 

46 



I 

Index  Declarations 

The  index  declaration is used  to  indicate  to  the  compiler  that a particular 
integer  data  item  should  be  maintained,  when  possible,  in  the  hardware  reg- 
isters  most  suitable  for holding  and  utilizing array  subscripts  instead of in  the 
memory  locations  normally  used  for  the  local  area of the  program  in  which 
the  item is used.  Effective  use of the  index  declaration  thus  increases  object 
code  efficiency via optimum  utilization of the  limited  number of suitable  reg- 
i s te rs .  Only items  that  are  frequently  employed as array  subscripts  should 
be  defined  with  the  index  declaration;  otherwise,  little  or  no  benefit  will  accrue 
from its use. 

Format  

DECLARE INDEX {, identifier]- 1 

The  identifiers, i f  previously  declared,  must  be of integer  type. 
If they  have  not  been  previously  declared  they will automatically 
be  declared  as  integer  i tems. 

Example 

DECLARE INDEX, I, J, K 

I,  J, K are  declared  as  integers  and  will  be  maintained  in  index 
registers  with  a  higher  priority  than  other  subscripts  not so de- 
clared. 

47 



Hardware  Declarations I 
The  hardware  declaration is used  to  specify  the  interrelationship  between 

the  program  and  the  object  computer's  hardware  configuration. By  allowing 
direct  reference  to  machine  registers  normally  invisible  to  the  applications 
programmer,  it can  be  used  to  promote  object  code  efficiency.  Unlike  the 
index  declaration,  which  merely  establishes  priorities  for  usage of hardware 
registers,  the  hardware  declaration results in  definite  allocations  in  the  re- 
sulting  object  program. 

Hardware  declarations  are  machine  dependent;  the  CLASP  capability is 
an  outline of their  use  in a general   form which  avoids  specifying  details  pecul- 
iar to  any  particular  computer. 

Format  

DECLARE HARDWARE type  {attributes ] 

{, identifier  {attributes  ]=hardware-code]m 1 

The  identifier is  the  name  assigned  to a machine  register,  and 
the  hardware  code is the  machine  address  or  name of the  reg- 
is ter .  The item  description  for  the  identifiers,  which  may be 
factored,  indicates  the  description  for  the data which a re   asso-  
ciated  with  the  hardware  registers. 

Different  identifiers,  types,  or  attributes  may 'be associated  with  the 
same  hardware  code  to  allow  the  same  register  to  assume  different data types 
or  attributes  and  to be referenced by different  names. 

Hardware  declarations  should be used  in  conjunction  with  the  inhibit/ 
enable  statements LOCK and UNLOCK to  avoid  the  possibility  that  the  compiler 
may  overwrite a value that the  programmer  wishes  to  save. 

Example 

DECLARE HARDWARE I, INDEX1 = 2, INDEX2 = 3 
DECLARE HARDWARE A, VAL 16 = 2 

48 



I Hardware  Declarations~-l 

The  hardware  declarations  demonstrate  assigning  names  to  some 
of the 16 regis ters  of the IBM  360.  INDEX1 and INDEX2 are   de-  
clared  to  be  integers,  whereas VAL is  declared  fixed  point  with 
a 16-bit  fractional  part.  Note  that INDEX1 and VAL refer  to  the 
same  general-purpose  register. 

49 



I Overlay  Declarations I 
The  overlay  declaration is used  to  indicate  the  order  in  which  previously 

declared  simple  items or a r r ays  should  appear  in  the  object  program  and  the 
location  in  which  they  should  be  stored  in  memory. It is also  used  to  assign 
two or  more  such  items  or  arrays  to  the  same  memory  location,  enabling 
economical.  use of storage  to be made  or a single  data  word  to  be  treated  as 
having  different  data  types  or  attributes. 

Format  

c onstant 
OVERLAY identifier  identifier 

[=identifier {, identifier ] 

The  constant  (which  may be integer,  hexadecimal,  octal,  or 
binary)  indicates  an  absolute  location  in  core. The identi- 
f iers  are  the  names of previously  declared  simple  items, 
a r rays ,  o r  subscripted  items  with  constant  value  subscripts. 

When a constant is used  following  the  primitive OVERLAY, the  declara- 
tion is an  absolute  overlay:  the  items  represented by the  identifiers  to  the 
right of the  equals  sign will start  at  the  specified  absolute  location  in  core  and 
will be in  the  order  given  in  the  declaration. 

When  a se r ies  of identifiers is used  immediately  after OVERLAY and 
there   is  no  equals  sign o r  second  series of identifiers,  the  items  will be allo- 
cated  to  memory  in  the  order given. 

When an  identifier o r  se r ies  of identifiers is used  immediately  after 
OVERLAY and is followed by an  equals  sign  and  another  series of identifiers, 
the  items  to  the  right of the  equals  sign  will  overlay  those to  the  left  in  the 
order given. That  is,  the first item on the  right  will  overlay  the first on the 
left;  the  second  item on the  right will overlay  the  second on the  left;  etc. If 
the  series on the  right  and  left do not  consist of the same  nurnber of items, 
the  excess  items  will  be  allocated  immediately  after the last one  for  which a 
match  exists,  and  in  the  order  given, 

If a subscripted  item is used  in  an  overlay  declaration,  the  entire  array 
i s  positioned so that  the  specified  element of the array  satisfies  the  overlay 
declaration. Any item  preceding o r  following a subscripted  item  in  an  overlay 
declaration will be  allocated  in  storage so that it immediately  precedes  or 
follows,  respectively,  the  specified  element of the  array,  If an  array  name is 

50 



Overlay  Declarations 

used  without  a  subscript,  the  compiler  will  position  the  array's first element 
in  the  indicated  position  and  any  identifiers following the  array  name will be 
positioned  after  the last element of the  array. 

Identifiers  may be repeated  within a single  overlay  declaration  or in 
successive  overlay  declarations so long as  the  repeated  use of the  identifier 
does  not  lead  to  an  ambiguous  memory  address  dete  nnination  for  any  item. 
If two or  more  items  have  been  overlaid  in  the  same  storage  location,  pre- 
setting  them  with  different  values is not  permitted.  Also, i f  an  item  declared 
with  the  attributes CONSTANT o r  PARAMETER is overlaid by another  item, 
neither of the  items  may  receive  a  value  from  an  assignment  statement o r  a 
procedure  call. 

An overlay  declaration  may  not  reference  items  which  have  not  previously 
been  declared.  Thus,  the  best  location  for  overlay  declarations  is  between 
the  data  declarations  and  the  imperative  statements of the  main  program. 
When data  local  to  a  procedure  are to be overlaid,  the  overlay  declaration 
must  of course be within  the  procedure. 

Example s 

(1) DECLARE  FIXED,  AA(20), BB(lO,2),  CC(5,2,2) 
OVERLAY AA = BB = CC 

The  overlay  declaration  causes  storage  to  be  allocated so that 
the  three  arrays all occupy  the  same 20 storage  locations. 

(2) DECLARE I, A A ,  BB,  CC, DD, EE,  GG 
OVERLAY AA, BB = CC, DD, EE = CC, DD, GG 

AA and CC occupy  the  same  storage  location,  followed by the 
location  which  BB  and DD share.  Following  this  location is the 
cell  which  EE  and GG jointly OCCUPY However,  the  overlay  dec- 
laration 

OVERLAY AA, BB = CC, DD, EE =DD, GG 

would  be  illegal  because DD i s  ambiguously  assigned to the  loca- 
tion AA occupies  and  the  one  following it. 



Overlay  Declarations 

(3) DECLARE  BOOLEAN,  TABI,   TAB2,   TAB3,   TAB4,   TAB5 
OVERLAY  TABI,   TAB2 
OVERLAY  TAB3,   TAB4 
OVERLAY  TAB2,  TAB5 

In  storage, TAB2 follows T A B I  and TAB5 follows TAB2.  TAB4 
follows TAB3, which a r e  both  located in storage  independently of 
TABI,   TAB2,  and TAB5. 

(4) DECLARE  FIXED,   R(  IO), RR(5),  AA,  BB,  CC,  DD, EE, FF 
OVERLAY  AA,  R(5), EE = BB,  CC,  DD,  RR, FF 

The  overlay  declaration  generates  the  following  storage  structure 
(identifiers  which  occupy  the  same  location  are on the  same  line): 

Because R(5) follows AA and EE follows R(5),   R(4) overlays 
AA and EE overlays R(6);  the   ent i re   array is positioned by 
positioning  one  element of it. FF follows  the last element of 
RR because RR was  specified  without a subscript. If RR(0)  
replaced RR in  the  overlay  declaration, FF would follow RR(0)  
instead of RR(4). 

(5) DECLARE  FIXED,  SW(6)  24 0, DW(3) 48 0 
OVERLAY  SW = DW 

On a computer  with a 24-bit  word  size,  array SW would be com- 
posed of six single-word  elements  and DW of three  double-word 
elements. Both  would occupy  the same  storage  locations,  every 
t w o  elements of SW overlaying one element of DW. 

52 



FORMULAS AND ASSIGNMENT 

A fundamental  program ope ration  is  the  computation of a  new value for  
a variable  and  its  substitution for  a previous  value.  The  computations  to be 
performed  are  specified by formulas  indicating  the  relationships  between 
items,  and the substitutions  are done with  assignment  statements. 

The  items  appearing  in  formulas  may  be  constants  or  variables  created 
and  described as outlined  in  the  preceding  section on data  declaration.  The 
identifier  used  in  an  item's  declaration  provides a means  for  referencing a 
simple  item  in a formula.  Subscripted,  nonscalar, and implicitly  subscripted 
items  provide a means  for  referencing  individual  elements  or  groups of 
elements  in  arrays.  These  more  complex  types of i tems  are  further  de- 
scribed  her  e. 

Formulas  are  categorized by  the  type of operations  to  be  performed; 
these  operations  are  specified by using  appropriate  operators.  Numeric 
operators  indicate  arithmetic  functions  such as addition  and  multiplication; 
logical  operators  indicate  bit-by-bit  logical  operations  such  as AND and OR; 
and  Boolean  operators  indicate  the  comparison  between  operands  such  as 
GREATER THAN and  EQUAL TO.  Both  numeric  and  logical  formulas  yield 
some  numeric  value  or a particular  bit  configuration.  Boolean  formulas  yield 
one of two values,  TRUE  or  FALSE.  There  are  no  textual  operators  in CLASP; 
thus a textual  formula  can  only  be a textual  variable  or  constant. 

Assignment  statements  can  be of simple  form  in  which a single  new  value 
replaces a single old  value, o r  multiple  and  nonscalar  assignment  statements 
may  be  used,  one  such  statement  indicating  that  several  assignments  are  to  be 
made. In  addition,  an  exchange  assignment  statement  may be  used  to  inter- 
change  the  values of either  scalar  or  nonscalar  variables. A scaling  operator 
is  provided  such  that  intermediate and  final  scalings  normally  determined 
automatically  during  formula  evaluation  or  before  assignment  can  be  altered. 

53 



Subscripted  Items 

Subscripts  are  used  to  reference  elements of a previously  declared  array. 

Format  

2 
identifier  (integer-formula{,  integer-formula] ) 

0 

The  identifier  must  be a previously  declared  array,  and  the 
number of integer  formulas  must  equal  the  number of dimen- 
sions  with  which  the  array  was  declared. 

The  integer  formula,  called  the  subscript,  must  be of the  follow- 
ing  form: 

where v i s  a simple  integer  variable  and  the CIS are  integer 
constants. 

The  value of the  subscript is the  constant c or  the  value of v 
optionally  multiplied  or  divided by  c  and/or  optionally incre- 
rnented or  decremented by  c 

1 
2 

3' 

The  subscript  indicates  the  position of the  element of the  array  being 
referenced  along  the  dimension  to  which  it  corresponds.  Since  data  structures 
normally  begin  with a 0 ,  the  first  meaningful  value  for a subscript is 0 .  The 
last  meaningful  value  is  the  number of elements  in  the  corresponding  dimen- 
sion  minus i .  Thus, a f ive-element  array would have  subscripts  ranging  from 
0 to 4. 

A diagnostic  will  be  issued  by  the  compiler i f  a subscript is referenced 
out of its  declared  bounds by  a constant.  However,  no  detection of an  out-of- 
bounds  reference  will  be  made  during  the  execution of the  object  program. 
Where  data  have  been  located  adjacent  to  an  array, it is possible  to  reference 
the  array  out-of-bounds  to  access  the  adjacent  data,  although  this is not good 
coding  practice. 

54 



I Subscripted Items I 

Example s 

This subscriDted item is: 

(1) INFO(0, 0,O) the fir  st  element of array INFO 

(2) INFO(I,O, 0) the  Ith  element of array INFO 

(3)  SPEED(K*3-1) the  element of array SPEED whose  subscript 
i s  the value of K times 3 minus 1 

(4) DISCR(M/3,2) the element of array DISCR located at row 
M/3, column 2 .  Truncated division is  per- 
formed; thus if M is 5 ,  row 1 is  being refer- 
enced. 

55 



Nonscalar  Items 
~~ 

Nonscalar  subscripts  are  used  to  reference  an  entire  row,  column,  or 
plane of a previously  declared  array,  or  any  combination of row,  column,  and 
plane,  including  the  entire  array.  The  nonscalar  subscript  indicates  that all 
possible  values of the  subscript, as determined by the  array  declaration,  are 
intended.  Nonscalar  items  may  be  used  in  assignment  and  expression  opera- 
tions as described  elsewhere  in  this  section  to  extend  their  scope  over  the 
entire  range of any o r  all subscripts. 

Format  

:# .I> 

identifier ( r' "* integer-formula , integer-formula 12, 0 

As with  ordinary  subscripted  items,  the  identifier  must  be 
a previously  declared  array,  the  number of subscripts  (integer 
formulas) o r  nonscalar  subscripts  (asterisks)  must  equal  the 
number of dimensions  with  which  the  array  was  declared,  and 
the  integer  formulas  must  be no more  complicated  than 

v * c   + c 2 0 r v / c   $ c  
I I 2  

The  nonscalar  subscript  may be used  in  one-, two-, and  three- 
dimensional  arrays  in  any o r  all subscript  positions. 

Examples 

(I) Assuming  that  ABLE  has  been  previously  declared  as  the 3x4 
array:  

[-Z 3 
0 1 2 :I 0 2 10 

- 1  

ABLE(*, *) refers  to  the  entire  array;  ABLE(O,*) t o  the 
row  vector: 

1-7 2 10 41 

56 



Nonscalar  Items 

and  ABLE(*, 2) to  the  column  vector: 

(2) Assuming  that BAKER has  been  previously  declared  as  a  one- 
dimensional  array, BAKER(*) represents  all of its elements. 

57 



Implicitly  Subscripted  Items 

If implicit  subscripts  have  been  included  in  an  array  declaration,  any 
subsequent  use of the  array  identifier  without  subscripts  implies  the  previous- 
ly  declared  subscripts  such  that   the  same  element is referenced as that  which 
would be  referenced if  the  implicitly  declared  subscripts  were  explicitly  writ- 
ten. When the  array  identifier is used  with  subscripts, all implicitly  declared 
subscripts  are  overridden.  In  using  the  override  feature,  the  number of sub- 
scripts  written  must  be  the  same  as  the  number of dimensions  in  the  array, 
i. e.,   any  implicit  subscripts  that  are not  being  overridden  must  be  written. 
An implicitly  subscripted  item  always is a single  element of an  array.and  may 
not  be a nonscalar  quantity. 

Example s 

Assuming  that  the  following  implicit  subscript  declaration  has  been  made: 

DECLARE,  ABLE (R 3,  C 3) 

(1) ABLE 

ABLE(R, C) is being  implicitly  referenced. 

(2) ABLE(J6,K) 

The  lmplicit  subscripts  have  been  overridden  and  vector  column 
K of ABLE i s  being  referenced. 

(3) ABLE(R,  L) 

Again  the  implicit  subscripts  have  been  overridden;  element 
(R,L) is being  referenced.  Note  that  even  though R had  been 
declared  implicitly,  both  had  to  be  explicitly  written. 

58 



Nurne ric  Formulas 

Numeric  formulas  are  used  to  specify  the  calculations  to be performed 
in  solving a problem. A numeric  formula  is a combination of operands  (var- 
iables,  constants,  functions,  and  other  numeric  formulas)  linked by numeric 
operators. It must  be  written on a  single  line  which, of course,  can be con- 
tinued  for  several  cards. 

The  operands may  be data  items of any of the  following  types: 

(I) Floating  point (if included  in  the  particular  implementation) 
(2) Fixed  point 
(3) Integer 
(4) Boolean 

This list is arranged  according  to  the  relative  dominance of the  various  types. 
Operands of different  types  may  be  mixed  in a single  formula  and, i f  so, will 
be  converted  to  the  most  dominant  type  present  before  the  formulais  evaluated. 

The  numeric  operators  and  their  functions  are  as  follows: 

NUMERIC OPERATORS 

Operator Function 

+ Addition 

Subtraction 

Negation 

Multiplication 

I Division 

Exponentiation 

Usage 

xty  indicates  the  addition of 
x and  y. 

x-y  indicates  the  subtraction of 
y  from x. 

-x indicates  the  negation of x. 

x*y indicates  the  multiplication 
of x and  y. 

x/y  indicates  the  division of X 

by  y.  Division  by 0 is undefined; 
fractional  parts  are  truncated  in 
integer  division. 

x**n indicates  x  raised  to  the  nth 
power.  n  must  be  an  integer  con- 
stant. 

59 



Numeric  Formulas 

The  order of evaluation of a numeric  formula is determined  bythe  priority 
of operations  to  be  performed,  by  the  left-to-right  order of operations  to  be 
performed  in  the  case of operations  having  equal  priority,  and  by  the  use of 
par  enthe s e s . 

The  priority of operations  is: 

(I) Negation 
(2) Exponentiation 
(3) Multiplication  and  division 
(4) Addition  and  subtraction 

Negation is  differentiated  from  subtraction  in  that a ‘l-  l1 operator  specifies 
subtraction  only when there  is  something  in  the  formula  from  which  the  term 
following  the  operator  can be subtracted. 

Balanced  pairs of left  and  right  parentheses  are  used  to  indicate  that  the 
formula  they  enclose  should  be  evaluated  and  the  result  used  as  an  operand  in 
evaluating  the  remainder of the  formula.  Parentheses  may be nested;  the 
formula  enclosed  in  the  innermost  pair will be  evaluated  first, and so on to 
the  outermost  pair.  If  desired,  pairs of parentheses  may  be  used  to  clarify 
the  order of evaluation  even i f  the  priority of operations  makes  them  unnec- 
essary.  

Examples 

( I) CLASP Formula 

(A/B) tC  or   A/BtC 

A/(BtC) 

A/(B /c) 

(A/B) /c  o r  A / B / C  

Mathematical  Equivalent 

A - t c  B 

A 
B t  C 

A 
B 
C 

c_. 

- 

A 
B 
C 

- - 

60 



Numeric  Formulas 

(2) (ALPHAt2) / (ZLIK t (PI**3)) - 3.14 t BETA 

The  order of evaluation would  be: 

(a) PI**3 
(b) ZLIK t result  of (a) 

' ( c )  ALPHAt2 

(e)  (d) - 3.14  
(f) (e) t BETA 

( 4   ( 4  1 (b) 

B y  algebraic  manipulation,  the  compiler  may  rearrange  formulas to  yield 
a more  efficient  scheme of operations.  Constant  terms  in  expressions  may  be 
combined.  For  example,  the  formula 

3 .  * ALPHA/ 1. E6 

which  requires two operations  and  storage fo r  two constants, can be optimized 
and  compiled  in  the  form 

3 . E - 6  'x ALPHA 

which  contains  only  one  operation  and  requires  storage  for  only  one  constant. 

The  programmer  can  aid  in  the  production of efficient  object  code by 
factoring  out  common  terms  to  reduce  the  number of operations to be  per- 
formed.  To  illustrate,  the  algebraic  formula 

Ax2 t B x  t C 

could  be  written  in CLASP a s  

A * X*'%2 t B * X t C 

which  requires  three  multiply  operations  and two  addition  operations,  or as 

which  requires  one  less  multiply  operation. 

61 

I 



Logical  Formulas 

Logical  formulas  are  used  to  specify  the  bit-by-bit  manipulation of data 
items  and  consist of operands  linked  by  logical  operators. A logical  formula 
yields a 0 o r  1 for  every  bit  in  the  formula's  result.  The  operands  themselves 
remain unchanged by the  operators.  Thus,  for  example,  "shift of z t t  means 
that  the  value of z is  shifted; z itself is not altered. A Boolean  formula  differs 
from a logical  formula  in  that it yields a value  which  can  only  be 0 (FALSE)  or 
1 (TRUE)  for  the  entire  formula. 

The  following  table  identifies  the  logical  operators  and  their  functions. In 
the  usage  column of the  table, ri is the  ith  bit of the  result of the  formula  and 
the  symbols shown  below  represent  the  indicated  types of operands: 

x, Y numeric,  textual,  and  logical  formulas (xi and yi are 
the  ith  bits of x and  y,  respectively) 

k integer  numeric  formula 

Z numeric o r  logical  formula 

LOGICAL OPERATORS 

Operator  Function  Usage 

LAND Logical  product x LAND y indicates  the  bit-by-bit 
ANDing of x and y such  that  for all 
bits   i ,  r i is  1 i f  both 3 and  yi a r e  1 
and i s  0 otherwise. 

LOR Logical s u m  

LXOR Exclusive OR 

x  LOR  y indicates  the  bit-by-bit 
ORing of x and y such  that  for all 
bits i, ri is 0 if both xi and  yi   are 
0 and is 1 otherwise. 

x LXOR y indicates the bit-by-bit 
modulo 2 sum of x and y such  that 
for all bits i, ri i s  1 i f  and  yi 
differ  and is 0 i f  they  are  alike. 

62 



Logical Formulas 

Operator Function 

LSH Left  shift 

\ 

LOGICAL  OPERATORS 
(continued) 

RSH Right  shift 

Usage 

e LSH k indicates  an  arithmetic  left 
shift of z by  k bits.  Zeros  are 
propagated  into  vacated  positions on 
the  right. Bits shifted  out of the left  
are  lost.  This  shift  corresponds  to 
a multiplication of z by 2 k . 
z RSH k indicates  an  arithmetic 
right  shift of z by k bits.  The  sign 
bit  is  propagated  into  vacated  posi- 
tions on the  left  and  bits  shifted  out 
of the  right  are  lost.  This  shift 
corresponds  to a division of z by 2k. 

Complex  logical  formulas  with  more  than  one  log'ical  operation  are 
evaluated f rom left  to  right  in  the  same  manner  as  numeric  formulas.  Paren- 
theses  are  allowed to clarify  the  order of operations;  see  Example (5). In  the 
absence of parentheses,  the  logical  operators  have  precedences  from  high to 
low a s  follows: 

( I )  LSH and RSH 
(2)   LAND 
( 3 )  LOR and LXOR 

By considering  one  operand  to  be a mask,  LAND can  be  used  to  turn off 
bits  in  the  other  operand, LOR can  be  used  to  turn on bits  in  the  other  operan4 
and LXOR can  be  used  to  reverse  bits  in  the  other  operand;  see  Examples (I) 
through ( 3 ) .  

If a logical  formdla is used  in  an  arithmetic  operation,  the  formula's 
value is assumed  to  have its radix  point  immediately  to  the  right of the  least 
significant  bit.  Multiplications  and  divisions by powers of 2, for  example, 
can  be  accomplished  using  the LSH and RSH operators;  see  Example (6).  

6 3  

I .  



Logical  Formulas I 

Assuming  for  simplicity  that  items  are 6 bits  in  length: 

(I) A  LAND Bl l l i  1001 

resul ts   in  A with the two  low-order bits turned  off. 

(2) A LOR B ' O O O O I  If 

results  in A with  the  two  low-order  bits  turned  on. 

(3) A  LXOR  B~OOOOIll 

results  in A with  the  two-low  order  bits  reversed. 

(4) B ~ 1 1 0 1 0 0 ~  RSH 2 

resul ts   in   Bl l l  I 1011 

(5) ABLE LOR BAKER LSH 1 LAND CHARLY 

is evaluated as if parentheses  had  been  placed as follows: 

ABLE  LOR ((BAKER LSH 1) LAND CHARLY) 

and  would  take  three  steps: 

(a) BAKER LSH I 
(b) (a) LAND  CHARLY 
(c) ABLE LOR (b) 

In  the  above  formula,  assuming that 

ABLE = B I O I  10 101 
BAKER = B1O1llOIf 
CHARLY = Br1 I I O O O l  

64  



L o g i c a l  Formulas 

then 

(a) BAKER  LSH i = BIOIIIOI1  LSH I = B'I I IOIO1 

(b) (a) LAND  CHARLY = B I I I I O I O 1  LAND B~III000~ 
= B' I 11000' 

(c)  ABLE  LOR (b) = B'O1i01O1 L O R   B ' I I I 0 0 0 '  
= B'IIIOIO' 

( 6 )  ( Z  + Q) LSH 2 

results  in  the  effective  multiplication of Z + Q by 4. This is   an 
example of im.bedding shift operations  in  numeric  formulas. 

65  



oolean  Formulas 

Boolean  formulas  are  used  to  construct  questions  about  the  results of the 
evaluation of other  formulas;  evaluating  them  corresponds to answering  the 
question,  the  only  possible  result  being  either  TRUE  or  FALSE.  The  numeric 
representation of the  result  will  be 1 if TRUE  and 0 i f  FALSE,  consistent  with 
the  Boolean  constants TRUE  and  FALSE. The re   a r e  two types of Boolean 
formulas:  simple  and  complex. 

Simple  Boolean  formulas  consist of arithmetic,  textual,  or  logical  formu- 
las and  the  relational  operators  indicated  in  the  following  table.  In  the  usage 
column of the  table,  the  symbols shown  below  can  represent  the  indicated types 
of operands: 

v, w numeric,  textual,  and  logical  formulas 
x, Y numeric  formulas 

Operator 

EQ 

NQ 

GR 

GQ 

LS 

LQ 

RELATIONAL  OPERATORS 

Algebraic 
Equivalent  Usage 

- - v EQ w i s  TRUE i f  v equals w and is FALSE 
otherwise. 

# v NQ w i s  TRUE if  v does not  equal w and i s  
FALSE  otherwise. 

> x GR y is TRUE i f  x is   greater  than y and is 
FALSE  otherwise. 

2 x GQ y is TRUE i f  x is greater  than  or  equal 
to  y and is FALSE  otherwise. 

< x LS y is TRUE i f  x is less  than y and i s  
FALSE  otherwise. 

x LQ y is TRUE i f  x is  less  than  or  equal  to 
y and i s  FALSE  otherwise. 



Boolean Formulas 

Examples  (Simple  Boolean  Formulas) 

(I) FLAG GR 0 
(2) RANGE LQ  DIST f; SAFETY 
(3) BITS  LSL 3 NQ BliO 11 11' 

Complex  Boolean  formulas  consist of simple  Boolean  tormulas o r  items 
linked 'by Boolean  operators. The operators  and  their  usage  are  indicated in 
the  following  table. 

BOOLEAN OPERATORS 

Operator 

AND 

OR 

NOT 

EQUIV 

Usage 

x AND y is  TRUE i f  both x and y a r e  TRUE  and is 
FALSE  otherwise. 

x OR y is FALSE i f  both x and y a r e  FALSE  and i s  
TRUE  otherwise. 

NOT x i s  TRUE i f  x is FALSE  and i s  FALSE i f  x i s  
TRUE. 

x EQUIV y i s  TRUE if  x and y a r e  both TRUE or  both 
FALSE  and i s  FALSE  otherwise. 

The  order of evaluation  for  complex  Boolean  formulas  depends  on  the 
precedence of operators.  Relational  operators,  all of which a r e  of the  same 
precedence,  are  higher  than  Boolean  operators  and  are  performed  first.   The 
precedence of Boolean  operators is: 

(I) NOT 
(2) AND 
(3) OR and EQUIV 

Parentheses  can  be  used  in  Boolean  formulas  to  clarify  or  modify  the 
order  of evaluation.  Parentheses  must  not  be  allowed  to  interfere  with  the 
precedence of relational  over  Boolean  operators  or  meaningless  formulas m a y  
result. 

67  



Boolean  Formulas 

The  Boolean  formulas  most  deeply  nested  in  parentheses  are  evaluated 
first, the  next  deepest  next,  etc. A left-to-right  order of evaluation  applies 
after  the  application of parentheses  and  precedence  rules.  During  the  left- 
to-right  evaluation,  the  Boolean  formula’s  value is completely  specified as 
soon as  the  evaluation of a comparison  conclusively  determines a value  for 
the  entire  formula.  In a set  of comparisons  connected by ANDs, the value. 
FALSE is  specified  for  the  entire  statement  as soon a s  any  comparison 
specifying  FALSE is evaluated;  and  similarly, a set  of comparisons  connected 
by  ORs  specifies  TRUE  as soon a s  any  comparison  specifying  TRUE  is  evalu- 
ated.  Consider  the  evaluation of the  complex  formula 

(BOOLI OR BOOL2) AND (BOOL3 OR BOOL4) OR BOOL5 

If both  BOOLl  and BOOL3 give  the  value  TRUE,  they  will  be  the  only  two  re- 
lations  tested  to  determine  the  formula’s  value  to  be  TRUE. If BOOLi  and 
BOOL2 both  give  the  value  FALSE,  they  will  be  the  only two relations  tested 
to determine  the val.ue of the two parenthetical  formulas  linked by the AND 
operator  to  be  FALSE;  hence  only BOOL5 remains  to  be  tested  to  determine 
the  condition of the  entire  formula. 

Examples  (Complex  Boolean  Formulas) 

Fo r  the  following  examples, ci refers  to  aBoolean  formula 

(I) c i  OR c AND c3 OR c4 2 

The AND i s  binding c2 and  c3  while  the  ORs  are  separating  the 
statement  into  three  general  conditions. Any one of the  follow- 
ing  three  conditions  makes  the  formula TRUE: 

(a) c i   i s  TRUE 
(b) c and  c3  are TRUE 
(c)  c4 is TRUE 

2 

(2) c AND c2 OR c AND c4 
3 

There   a re  two general  conditions  that  make  the  formula TRUE: 

(a) c i  and  c2 a r e  TRUE 
(b) c3 and  c4  are  TRUE 

68  



I 

Boolean  Formulas 

(3)  c i  AND (c  2 OR c 3 ) AND c4 

Parentheses  group two conditions  and  thereby  change  the  logic 
of the  statement. For the  formula  to  be TRUE,  the  following 
three  conditions  must  all be TRUE: 

(a )   c i  is TRUE 
(b) c 2  o r  c o r  both a r e  TRUE 

(c) c4 is TRUE 
3 

I 



I I 111 I I I I 111 1111111111.111 111111 .11111111111 111.1- .,.I I, 

The  operators  at  the top of the  following list have  greatest  precedence; 
they will be performed  before  operators  lower on the list when all   appear  at  
the  same  level of parenthesized  nexting.  Operators  with  equal  precedence  are 
on the  same  line. If two operators of equal  precedence  appear  in  an  expres- 
sion, the  leftmost  operation is performed first. 

Numeric  unary - * << 
*, / 
+, - 

Logical LSH, RSH 
LAND 
LOR, LXOR 

Relational  EQ, NQ, GR, GQ, LS, LQ 

Boolean NOT 
AND 
OR,  EQUIV 

Examwle 

The  formula 

A*B/C*::2  RSH 3 GR D OR E AND F LXOR G NQ 0 

i s  equivalent  to 

((((A*CB)/(C**2)) RSH 3) GR D) OR (E AND ((F LXOR G) NQ 0)) 

2 3  1 4 5 9 8 6 7 

with  the  order of operations  indicated  underneath  each  operator. 
This   is  a Boolean  formula  since  the  last  operation  performed is 
the  Boolean  OR. 

70 



0 Assignment 

A simple  as'signment  statement is used  to  specify  that a formula is to be 
evaluated  and  the  resulting  value  assigned  to a variable.  Multiple,  nonscalar, 
and  exchange  assignment  statements  can  be  decomposed to simple  assignment 
statements;  the  rules  given  here  apply  to  them as well  unless  otherwise  stated. 

Format  

variable = formula 

The  variable on the  left  side of the  equals  sign  must  be a scalar  variable 
in a simple  assignment  statement  and  may  also  appear  in  the  formula on the 
right.  In  this  case,  the  old  value of the  variable is used  in  evaluating  the 
formula.  In what follows,  the  variable is referred  to as the  left  term  and  the 
value of the  formula  as  the  right  term. 

The  type of variable  designated by the  left  term  defines  the  type of assign- 
ment  statement  and  may  be  any  data  type  in  the  language. With the  exception 
that  textual  formulas  may  be  assigned only to  textual  variables,  the  right  term 
need  not  agree  in  type  with  the  left  and  may  itself  contain  data of different 
types. 

In  evaluation of a formula  containing  operands of different  types,  the  inter- 
mediate  type of their  combination will be  that  which  gives  the  greatest  pre- 
cision.  In  the  absence of a floating-point  capability,  fixed  point is   assumed  to 
give  the  greatest  precision  and  thus  is  the  most  dominant,  followed  in  turn by 
integer  and  then  Boolean. So long a s  floating  point  is not  included, no con- 
version will be  performed  during  formula  evaluation.  (Integer  and  Boolean 
data  can  be  considered  to  be  fixed-point  data  with 0 fractional  bits i f  fixed 
point is dominant,  and  Boolean  data  can  be  considered  to  be of integer  type i f  
integer  is  dominant.) If floating  point i s  included,  however,  it  dominates 
fixed  point  and  appropriate  fixed-to-floating  conversions  are  performed. 

The  resulting  type of the  right  term is determined by the last operation 
performed  in  the  formula  evaluation. If this  type is logical,  the  value of the 
formula,  bit  for  bit,  will  be  assigned  to  the  left  term  without  conversion,  re- 
gardless of the  type of the  left  term. If the  result is longer  than  the  left  term, 
the  excess  bits will be  truncated  from  the  high-order end of the  result  before 
assignment  takes  place. If the  result is shorter,  it will  be  stored  in  the  left 
term  right-adjusted,  with  zeros  filling  the  excess  high-order  bits. 

71 



0 Assignment 

The  result of the  evaluation  will be automatically  converted  to  the  type of 
the  left  term  according  to  the  following  rules. 

As  sianina  to  Fixed-point  Variables 

(1) If the  right  term  is  fixed  point, it is   adjusted by shifting so that 
i ts   binary point i s  aligned  with  that of the  fixed-point  variable  to 
which it i s  being  assigned. A direct  transfer of data  then  takes 
place. If the  left  and  right  terms  have  identical  binary  points,  no 
shift  will  be  generated.  Truncation of the  fractional  part  may 
result  when the  scaling  readjustment is done. No truncation  or 
overflow  beyond  that  resulting  from  the  scaling  readjustment  will 
take  place if the  integer  part  or  fractional  part of the  right  term 
is greater  than  the  corresponding  part of the  left  term. 

(2) If the  right  term is an  integer  or  Boolean  quantity, it is   t reated 
exactly as a fixed-point  quantity  whose  binary  point is immediate- 
ly  to  the  right of its  least  significant  bit. 

(3) If the  r ight  term  is  a floating-point  quantity, it is converted  to  fixed 
point of same  scaling  as  that of the left. term.  

Assigning  to  Integer  Variables 

(1) If the  right  term  is a fixed-point  quantity,  it is adjusted by shift- 
ing so that its binary  point  is  positioned  immediately  to  the 
right of its  least  significant  bit. An equal  transfer of data  then 
takes  place. Any fractional  part will be  truncated by this  opera-' 
tion.  Overflow  may  result  in  the  integer  part i f  that  part is 
larger  than  the  amount of space  allocated  to  the  integer  item. 

(2) If the  r ight  term  is  an  integer o r  Boolean  quantity,  the  result is 
an  equal  transfer of data. 

(3) If the  right  term is a floating-point  quantity, it is converted  to 
an  integer  quantity. 

72 



0 Assignment 

As  signing  to  Boolean  Variables 

(I) If the  right  term is a fixed-point,  integer,  or  floating-point 
quantity  and i f  all b i t s   a re  0, then 0 (FALSE)  will  be  assigned 
to  the  left term. Otherwise,  the  value 1 (TRUE) willbe assigned. 

(2) If the  right  term is a Boolean  quantity,  an  equal  transfer of data 
takes  place. 

Assienine to Textual  Variables 

(1) Fixed-point,  integer,  Boolean,  and  floating-point  quantities  may 
not  be  assigned  to  textual  variables. 

(2) If the  r ight  term  is   textual  and  is   the  same  size  as  the  variable 
being  set,  an  equal  transfer of data  takes  place. If it has   more 
characters  than  the  variable,  the  rightrnost  characters  are  lost; 
and i f  it has  fewer  characters,  the  value  is  assigned  left-justified 
within  the  variable  and  excess  character  positions  are  set  to 
blank. 

As - signing ~~ to  Floating  -Point  Variables 

( I )  If the  right  term is floating  point  of  the  same  precision  as  that of 
the  left  term, a direct  transfer  takes  place. If the  r ight  term  is  
double  precision  and the left  term  single  precision,  the  excess 
word  is  truncated; i f  the  left  term  is  double and the  right  single, 
the  excess  word  is  set to 0. 

(2) If the  right  term  is  integer,  fixed  point,  or  Boolean, it is con- 
verted  to  floating  point  with  the  same  precision as the  left  term 

Example s 

(1) DECLARE  FIXED 24 5, DIST, SPEED, TIME 

DIST = TIME * SPEED/3600 

DIST is computed  in  fixed  point.  The 3600, although  an  integer 
constant,  will  be  interpreted as fixed  point  since it is being 
divided  into a fixed-point  operand. 

73 



I Assignment I 
(2) DECLARE  INTEGER,  ALPHA,  BETA, GAMMA 

ALPHA = (BETA NQ 0) * GAMMA 

ALPHA is set  to 0 o r  GAMMA depending  on  the value of the 
Boolean  formula  (which is interpreted as an  integer, 0 o r  i, for  
purposes of numeric  computation). 

( 3 )  DECLARE BOOLEAN, ANSWER ( 3 ) ,  R E P L Y  

ANSWER (0)  = FALSE 

ANSWER (I) = BETA GR ALPHA OR ANSWER (0 )  

ANSWER (2) = ANSWER ( 0 )  EQUIV ANSWER ( i )  

R E P L Y  = ANSWER (2) 

Elements  within  the  Boolean  array ANSWER are  set  to  Boolean 
formulas,  and a Boolean  assignment is made  between  an  element 
in  the  array ANSWER and the Boolean  item R E P L Y .  

(4)  DECLARE  INTEGER,  IOTA 
DECLARE  FIXED,  EPS  24 io 

IOTA = B'01010' 
EPS = IOTA LOR B'00001' 

IOTA is set  to  B'01010'  and  EPS  to B'OiOii ' .  Because  EPS is 
assigned  to a logical  formula, no conversion  or  rescaling  takes 
place  even  though  different  types are involved - -  only a t ransfer  
of bits. 

74 



The  TEMP  attribute is used  to  prevent  the  compiler  from  rescaling  items, 
that is, when it is desired  to  employ  an item for  temporary  storage of fixed- 
point  values  having  many  different  scalings.  Thus,  whenever a fixed-point 
item  previously  declared  with  TEMP is used on the  left  side of an  assignment 
statement, a logical  assignment  occurs: a transfer of bits  takes  place  without 
regard  to  the  scaling of the  quantity  being  assigned.  The  TEMP  variable  will 
assume  the  same  word  size  and  number of fractional  bits  (the  same  scaling) as 
the  formula on the  right,  and it will  keep  this  scaling until the  TEMP  variable 
again  appears on the  left of an  assignment  statement  as  determined by a 
beginning-to-end  scan of the  program.  Whenever  the  TEMP  variable  appears 
on  the  right of an  assignment,  it will be  assumed  to  have  the  currently  effec- 
tive  scaling  attributes.  This  may  result  in  some  conflicts,  the  resolution of 
some of which is shown in  the  example. 

DECLARE  FIXED,  R TEMF’ 

ALFA.  R = A  + B 
W = R / ( R + C )  
R = W , k X  
Z = R / ( R - Z )  
BETA. L = J + R 

When code is  generated by the  compiler,  R  will  assume  the 
temporary  attributes of the  expression  A + B. Each  time  an 
assignment is made to R as  the  program is scanned  from  begin- 
ning  to  end,  R  will  take  on  local  attributes  that will be  effective 
until  the  next  assignment  to  R. When a  new  statement  label i s  
encountered  after  an  assignment  to  R  has  been  made,  the  local 
attributes  currently  in  effect  for  R  may  not  be  valid;  thus  a 
diagnostic  message  will  be  issued by the compiler  which  includes 
a pointer  to  the  statement  from  which  the  currently  effective  local 
attributes  have  been  derived.  For  this  example, a diagnostic 
message  will  be  printed  for  the  statement  labeled  BETA  and  in- 
dicating  that  the  local  attributes of R  have  been  determined at 
statement  ALFA+2. 

75 



- Scaling  Operator 

The  scaling  operator is used  to  override  intermediate  scalings  that would 
normally  result  from  the  application of scaling  algorithms  during  evaluation 
of fixed-point  formulas. One form  enables  the  total  number of bits  and  the 
number of fractional  bits  to  be  declared  for  intermediate  fixed-point  results. 

Format  

. S is the  scaling  operator  and  the  nfs  are  integer  constants.  The 
optional nl  indicates  the  total  number of bits  with  which  the  inter- 
mediate  result  is  to  be  maintained - -  i f  absent, a full  word is 
assumed. n2 is the  number of fractional  bits  to  be  maintained 
in  the  intermediate  result. 

The  scaling  operator  is  written  immediately  to  the  right of the  fixed-point 
operand  (variable o r  formula)  which is  to  be  scaled.  The  value of the  operand 
will  be  shifted i f  necessary  to  satisfy  the  indicated  scalings. If the operand 
i s  a formula  containing  operators, it must  be  surrounded  by  parentheses, 

Example 

A = (B*C) . S(10, 7) + D 

The  scaling  operator  indicates  that  regardless of the  previous 
declarations  as  to  the  size  and  precision of items B and  C, a 
10-bit  total  length  with 7 fractional  bits is sufficient for  their 
product  in  this  formula.  This  assignment is equivalent to the 
following: 

DECLARE  FIXED,  IRESLT 10 7 

IRESLT = B:kC 
A = IRESLTSD 

Thus  the  effect of the  scaling  operator on i ts   operand  is   the  same 
a s  what would occur i f  the  operand  were  assigned  to a variable 
having  the  same  bit  declarations  as  the  arguments of the  scaling 
operator. 

76 



I 

Another  form of the  scaling  operator, . S by itself, is used  to  indicate  that 
the  intermediate  result is to  be  maintained  in  extended  precision at a small  
cost  in  generated  object  code. 

Example 

A = (B * C) . S t  (D $6 E) .S 

Although A, B, C, D, and E are  i tems  each occupying a single 
computer  word o r  less,  the  intermediate  products B * C and 
D * E will be retained  in  the  double-precision form in  which  they 
a r e  obtained  from  the  computer's  multiply  instruction,  and  the 
products  will  also be summed  using dou'ble precision. The 
assignment of the result to A will  involve a single-precision  store, 
however. Note that . S is  meaningful for multiplication  results 
only  to  the  extent of indicating how summing is to  occur. 

A third  form of the  scaling  operator, .S followed by a statement  label  en- 
closed  in  parentheses,   is   used  to  override  the  automatic  scalings  determined 
by the  compiler  for TEMP variables.  The  scaling  used  will be that  determined 
at the  statement  label  which  is  the  argument of the  scaling  operator. 

Example 

DECLARE  FIXED, T i  TEMP, V i  15, V2 0 ,  V3 0 

Ll. T i  = V I  

GOT0 L 2  

V2 = T1/3. 14159 

T i  = V2 

L2. V3 = T i  .S(Ll) * V2 

77 



Scaling Ope rator 

T I  is first used  to  store VI temporarily. When TI  is used  in  the 
formula  assigned  to V2, it is considered to  have  the  same  scaling 
a s  VI (that is, 15 fractional bits)  because of its  local  scaling.  In 
the last statement, T I  is again  used  with  the  scaling  determined 
by the  assignment  statement  labeled L l  because the . S(L1) over- 
rides  the new local  scaling of 0 fractional  bits  determined by the 
scaling of V2. 

78 



Multiple As signment 

A multiple  assignment  statement is used  to  set  several  variables  via  one 
statement. It performs  the same operations as several  simple  assignment 
statements  but  requires  less  writ ing.  

Format  

variable {, variable 3 = formula I, formula] 
OD aD 

1 0 

The  number of variables  must not  be less  than  the  number of 
formulas. 

The  formulas  are  evaluated and  the  results  assigned  to  each  formula's 
corresponding  variable  on  the  left. If there  are  fewer  formulas on the  right 
than  variables on the  left,  the  unmatched  variables  are  set  to  the  value of the 
last formula on the  right;  see  Example (2). 

Multiple  assignment  can  also  be  accomplished by use of a  previously  de- 
clared  group  name f o r  the  variable on the  left; all declared  items  in  the  group 
will  be  multiply  assigned  in  the  order of their  declaration.  See  Example (3 ) .  
The  group  name  should  not  be  used on the  right of an  assignment  statement. 

Examples 

This  multiple  assignment is equivalent  to  the  following  three 
simple  assignment  statements: 

A = 4  
B =Q/R 
C = ABS(Y) 

(2) A, B ,  C, D = 5, 6 

This  is  equivalent  to: 

A = 5  
B = 6  
C = 6  
D = 6  

7 9  



Mult ip le   Ass ignment  

( 3 )  GR5.  DECLARE  FIXED,  ALPHA,  BRAVO,  ECHO 

GR5 = 0 .0  

GR5 = AtB,  7 .0 ,  ALPHA**2 

In  the first assignment  statement, all items  in GR5 a re   s e t  to 0. 
In  the  second. A L P H A  is set  to A t B ,  BRAVO to 7 . 0 ,  and ECHO 
to ALPHA**L, 



Nonscalar  Assignment 

Nonscalar  assignment  statements,  that is, those  containing  nonscalar 
i tems as operands,  are  used  to  replace,  in a more  succinct  form,  several 
equivalent  simple  assignment  statements. 

Format  

variable = formula 

The  variable  on  the  left  side of the  equals  sign  must  be a nonscalar 
variable  and  may  also  appear  in  the  formula on the  right. If the  formula on 
the  right is scalar  (one  in  which  nonscalar  items  do  not  appear),  then it is 
evaluated  once  and  assigned  to all elements of the  variable on the  right  as 
indicated  in  Example (I). If the  formula  on  the  right  is  nonscalar, it is evalu- 
ated  for  all  possible  values of the  nonscalar  subscripts  (asterisks)  it  contains 
and  the  results  are  stored  in  the  corresponding  positions of the  left  term.  For 
this  to be accomplished,  each  nonscalar  item  in  the  right  term  must  agree 
with  the  left  term  according to  the  following two rules: 

(I) It must  have  the  same  number of asterisk  subscriDts  as  the  left 
term. 

(2) Each  asterisk on the  right  must  represent  the  same  size  dimen- 
sion as the  corresponding  asterisk of the  left  term. 

A special  nonscalar  assignment  operation is provided  for  accomplishing 
the  linear  algebra  type of matrix  multiplication  where 

A = B  C 

such  that  for  each  element A. of matrix A 
1j 

8 1  



Nonscalar  Assignment 

Format  

where  the  mfs  are  two-dimensional  array  identifiers  declared 
such  that  the  number of columns of m2  equals  the  number of 
rows of m3  and  the  dimensions of m i   a r e  the  same  as  the  row 
dimension of m2  and  the  column  dimension of m3. 

This  operation,  the  only  nonscalar  operation  accomplished  without  using 
asterisk  subscripts, is illustrated  in  Example (7). The /*/ operator  may not 
be  used  in  any  type of formula  other  than  the  one  described.  n-element  one- 
dimensional  arrays  are  considered  to  be nXi matrices  for  purposes of matrix 
multiplication. 

Examples 

( I )  DECLARE  INTEGER,  MAT(3,3) 

MAT(*, *) = MAT(0,O) 

MAT(;C, 2) = 0 

In the  first  nonscalar  assignment, all elements of a r r a y  MAT 
are  set  to  the  value of the first element of MAT. In the  second 
assignment,  the  last  column of MAT is set  to  all  zeros. 

(2) DECLARE  FIXED 24 0, X(3,4, 5), Y(3, 51, Z(4, 3) 

X(*, *, K-2) = Z ( z c ,  *) (illegal) 

X(*, 0,O) = Y(*, *) (illegal) 

82 



~ 

Nonscalar  Assignment 

The  first  assignment  sets  the  cross-sectional  matrix  formed by 
column 2 in all planes of X equal  to  the  matrix Y. The  second 
assignment is illegal  because  it  violates  Rule (2) :  corresponding 
asterisks  do  not  represent  the same size  dimensions.  The  third 
assignment is illegal  because it violates  Rule (I): the  number of 
as ter isks  on both  sides do not  agree. 

SINX (.*) = .SIN(X(Xc)) 

Each  element of vector SINX is set to  the  value of the  function 
.SIN applied  to  corresponding  elements of vector X. . SIN will 
be  called  separately  for  each  element of X and  thus  will  receive 
a scalar  value  for  an  argument. 

DECLARE FIXED (3,2), A, B, C 

A(*,*) = B(*,J&) -l- C(*,*) 

Matrices A, B, C are  declared  through a factored  declaration 
which  sets  the  elements  to  fixed  point  and  the  size of all   three 
matr ices   to  3x2. Every  element of B i s  added  to  the  corres- 
ponding element  in C and  stored  in  the  corresponding  element of 
A. The  nonscalar  assignment is equivalent  to  the  following  six 
scalar  assignments: 

A(0, 0 )  = B(0, 0) 
A(1, 0 )  = B(1,O) 
A(2, 0) = B(2,O) 
A(0, I) = B(0, I) 
A(1, I) = B(1, I) 
A(2, I) =B(2,  I )  

A(*,*,5) =B(*,*) * 3 . 0  

All  elements of matrix B are  multiplied by 3.0 and  the  results 
are  stored  in  the  corresponding  positions of plane 5 in  three- 
dimensional  matrix A. The  number of rows  and  columns  in a 
plane of A must  be  the  same as the  number of rows and columns 
of B. 

83 



Nonscalar  Assignment 

This  complex  nonscalar  assignment  involves  four  different  non- 
scalar  variables.  The  compiler  will  optimize  by  computing 
scalar  subexpressions  such as W * U only  once  and  saving  the 
result  for  use  during  the  evaluation of the  formula  for  each 
possible  value of the  subscripts. 

( 7 )  DECLARE  INTEGER,  A(M, T) ,  B ( M , N ) ,  C(N,  T )  

This is an  example of nonscalar  assignment  for  performing  the 
linear  algebra  type of matrix multiplication. 

84 



Exchange  Assignment 

An exchange  statement is used  to  interchange  the  values of scalar   or  non- 
scalar  variables  via a single  statement. With nonscalar  variables, it can  be 
employed  to  interchange  rows  or  columns of a  matrix. 

Format  

variable {, variable 3 =.= variable f , variable 3 W 0)  

0 0 

The  number of variables on the  left of the  exchange  operator, = =, must  
equal  the  number of variables on the  right.  Each  variable on the  left  will  be 
exchanged  with  its  corresponding  variable on the  right.  The  rules of assign- 
ment  pertain  in  both  directions. 

Examples 

Assuming  that  the  following  data  declaration  has  been  made: 

DECLARE  INTEGER, A(lO), B(lO), C(4,4),  D(5,  5), 
u, v, w, x 

(I) A(2) = = B(4) 

The  third  element of a r r ay  A and  the  fifth  element of a r r ay  B 
are  interchanged. 

( 2 )  C(2,  :*) = = C(3,:X) 

The  third  and  fourth  rows of a r r ay  C are  interchanged. 

(3) D(*, I) = =D(:*, 3) 

The  second  and  fourth  columns of D are  interchanged. 

(4) u, v = = w ,  x 

Simple  variables  are  exchanged.  This  single  exchange  statement 
is equivalent  to  the  following six simple  assignment  statements: 

85 



Exchange Assignment 

TEMP = U 
u = w  
W = TEMP 
TEMP = V  
v = x  
X = TEMP 

86 



PROGRAM  CONTROL 

The  statements  in a CLASP program  are  executed  in the sequence  in 
which  they  appear  except as this sequence is altered,  either  absolutely  or 
under  specified  conditions, by control  statements. Any statement  may  be 
labeled  to  permit it to  be  referenced  by  other  statements.  The  simple GOTO 
statement  may  be  used  to  transfer  control  to  any  labeled  statement,  and  the 
switched GOTO statement  provides  for  transfer of control  to  any  one of a 
group of labeled  statements  depending  on  the  value of an  index.  Conditional 
statements  may  be  used  to  transfer  control  dependent  on  the  result of a 
Boolean  formula.  Loop  statements  are  provided  for  causing  the  same  se- 
quence of code to  be  executed a specified  number of times,with  an  index  modi- 
fied  each  time  by a specified  amount.  The  inhibit/enable  statements LOCK 
and UNLOCK a r e  provided  for  inhibiting  or  activating  hardware  functions  such 
as interrupts  and  for  preventing  the  use of regis ters  by  the  object  code  in 
designated  program  areas.  The  chronic  statement ON allows  the  sequence 
of control  to  be  altered when some  enabling  condition,  such as a hardware 
interrupt,  occurs.  Finally,  the  STOP  statement  may  be  used  to  cause a halt 
in  the  execution of the  object  program 

87 



Statement  Labels 

Statement  labels  are  used  to  name  statements,  allowing  such  labeled 
statements  to  be  referenced  by  other  statements.  The  statement  label,  which 
consists of an  identifier  immediately  followed  by a period,  may  be  placed 
at  the  beginning of any  executable  statement.  References  to a labeled  state- 
ment  may  be  made  both  before  and  after  the  label is defined  in  the  sequence 
of statements.  Statements  which  are not referenced  by  other  statements  need 
not  be  labeled. 

E x a m d e  

STAGE.  ABLE = Y * Z  

STAGE is the  statement  label. If transferred  to,  ABLE  will be 
assigned  the  value Y*Z and  the  next  sequential  statement  will 
be  executed. 

88 



GOTO Statements 

The GOTO statement is used to transfer  program  control  to  the  statement 
whose  label is used  with  the GOTO. 

Format  

GOTO identifier 

The  identifier  must  be a statement  label  defined  in  the  program. 
Note  that  the  identifier is used  without  the  period  which is re -  
quired when labeling  statements. 

Example 

GOTO FOX 

FOX. A = B+C 

Control  is  transferred  to  statement FOX by the GOTO. All state- 
ments  in  between  are  bypassed. 

89 



I Switched GOTO Statements I 
~~ 

The  switched GOTO is used  to  transfer  control  to  one of many  points  in 
the  program  based on the  value of an  associated  index. 

Format  

GOTO ({identifier 1 [ , identifier lo)  integer-formula 
Y 

The  identifiers  in  the  parentheses  (the  switch list) must  be 
statement  labels,  and  the  integer  formula  (the  index)  must  be 
of the  same  form as that  required  for  array  subscripts  (that 
is, no more  complicated  than v*c + c   o r   v / c   + c  ). 1- 2 1- 2 

When the  switched GOTO is executed,  control i s  transferred  to  the  state- 
ment  whose  position  in  the  switch list corresponds  to  the  current  value of the 
index: i f  the  value is 0, transfer  is   made  to  the  f irst   statement  in  the  l ist ;  if I, 
to  the  second  statement;  etc.  Transfer of control  does  not,occur i f  the  indexvalue: 

(1) corresponds  to  an  empty  position  (without .a statement  label) 
in the  switch  list, 

(2) is a negative  number,  or 

(3) is   greater  than  the  number of commas  in  the  switch  list. 

With no transfer of control,  the  statement  following  the GOTO i s  executed. If 
the  switch  invokes a close,  the  statement  following  the GOTO i s  executed  when 
the  close  exits. 

Example 

GOTO (A, ,  By C ,  D)  ABLE 
Q. W = X t Y  

Ccntrol  will be transferred to A if  ABLE = 0; to Q, the statement 
following  the GOTO, if ABLE = 1; to B if  ABLE = 2; etc. 

An alternate form of the switched GOTO is written  with  an  asterisk  in  the 
last  position of the  switch  list to speed  up the GOTO and  save  object  code. 

90 



I Switched GOTO Statements I 
Format  

GOTO ([identifier] [ ,identifier co , 3 , *) integer-formula 
9 

The  asterisk  serves  to  inhibit  limit  comparisons on the  index; it is used 
when it is assumed  that  the  index  always  corresponds  to a position on the 
switch list. If the  index is negative  or is greater  than  or  equal  to  the  number 
of commas,  unpredictable  results  will  occur  using  this  form. 

GOTO (Bl, B2,  B3, *) J / 2  

If this GOTO is  activated,  the  branch will execute  normally 
for J = 0,  I (control will be  transferred  to  statement B l ) ,  for 
J = 2, 3 (transfer  to  statement B2), or  for J = 4 , 5  (transfer  to 
statement B3). The branch will be  undefined  for  all  other 
values of J. 



The  conditional  statement  is  used  to  transfer  control o r  execute a section 
of code  based upon the  evaluation of a Boolean  formula.  The  general  format is 
the  primitive IF followed  by a Boolean  formula, a THEN statement  group,  an 
optional  ELSE  statement  group,  and  the  primitive END or  ENDALL. If the 
Boolean  result  is  TRUE,  the THEN statement  group is executed  and  the  ELSE 
group, i f  present,  is  bypassed. If it is FALSE,  the THEN group is bypassed 
and  the  ELSE  group, if present, is executed.  After  the THEN o r  ELSE  state- 
ment  group  is  executed,  as  appropriate,  control is transferred  to  the  state- 
ment  following  the END or  ENDALL unless  another  transfer of control  has 
been  executed.  Conditional  statements  may  be  nested;  hence  additional  con- 
ditional  statements  may  appear  in  both  the THEN  and the  ELSE  statement 
groups . 
Format  (with  an  ELSE  group) 

IF Boolean-formula 

THEN statement 

{statement 3," 

ELSE  statement 

{statement 1 m END 
0 ENDALL 

The THEN group is delimited by  THEN and  ELSE  and  the  ELSE 
group  is  delimited  by  ELSE and  END o r  ENDALL. 

Format  (without  an  ELSE ErouD) 

IF Boolean-formula 

THEN statement 

[statement? END 
0 ENDALL 

Since  there is no ELSE  statement  group  in  this  form, i f  the 
Boolean  result is FALSE  nothing  will  be  executed  and  control 
will  be  transferred  to  the  statement  immediately  following 
the END or ENDALL. 



Conditional  Statements 

Each  line of the two forms is a separate  statement.  These  statements 
should  be  written  according  to  the  normal  rules  (page 14) with  the  exceptions 
that: 

(1) The IF and  THEN statements  may be written on the  same  line. 
If  this  is  done, a statement  terminator  need not  be  used  be- 
tween  the  Boolean  formulaand  the THEN. 

(2) The last statement of the THEN group  and  the  ELSE  statement 
may  be  written on the  same  line. If this is done, a statement 
terminator  need  not  be  used  between  the two statements. 

( 3 )  The END or  ENDALLmay be  appended  to  the  last  statement in the 
conditional  statement  group  or  may be writ ten  as a separate  state- 
ment.  It  may  be  labeled if written as a separate  statement. If 
labeled  and if transferred to ,  control i s  transferred to  the  state- 
ment  immediately  following. 

ENDALL is  used  to  close  out  nested  conditional  statements  (and  also 
nested  loop  statements as defined  in  the  next  section);  whenever  an ENDALL 
is  encountered,  every  open  conditional  and  loop  statement  is  closed.  Use of 
the ENDALL avoids a string of ENDS at  the end of nested  statements. 

Examples 

(1) IF A GR B AND A  LS  C  THEN GOTO  STACK 
ELSE IF A  EQ D THEN GOTO (PO, P I ,  P2) I 
ENDALL 
P 3 .  X = W + Y  

This   is  a nested  conditional  statement. If A is greater  than B and 
less  than  C,  control  is  transferred  to  statement STACK. If not, 
and i f  A equals D, the  switched GOTO is executed,  but i f  A does 
not  equal D, control is passed  to  the  next  sequential  statement, 
P 3 .  

(2) IF A 
THEN  C(*) = BP6) 
X = Y  - 3.0 
END 
I = J - K  

93  

I 



I Conditional  Statements I 

This is a conditional  with no ELSE  group. If A is TRUE  (non- 
zero),  the  vector  and  scalar  assignment  statements  will  be 
executed,  followed  by  the  statement  after  the END. IF A is 
FALSE,  the two assignments  will  be  bypassed  and  the  statement 
following  the END will be  executed. 

IF ABLE  LS BAKER 
THEN C = 5.0 * D 
GOT0 EVAL 
ELSE  C = 2.5 :k D END 
GO. A = B t  C 

When ABLE is less  than BAKER, the THEN group i s  executed 
such  that C is set  to 5.0 t imes D and  control  passes  to  the  state- 
ment  EVAL.  Otherwise,  C is set  to 2 . 5  times  D and control 
passes  to  the  next  statement, GO. 

94 



r Loop Statements 

Loop  statements  are  used  to  cause a segment of coding  to  be  repetitively 
executed  one  or  more times. 

Format  

FOR v = i  {BY s ]  T o t  

{statement 3 .a END 
0 ENDALL 

v is  the  loop  variable, i is the  value  to  which  it is initially  set, 
s is the  optional  step  size  (assumed  to  be 1 i f  omitted),  and t 
i s   the  limit. v must  be of integer  type and i, s, and t may  be 
integer  variables  or  constants.  Note  that  each  line is written as 
a separate  statement,  except  that  the END or  ENDALL may  be 
appended  to  the last statement  in  the  loop. 

When a loop is entered,  all  statements up to  the END or  ENDALL are   exe-  
cuted;  then v is incremented  by s and  compared  with t. Control is returned  to 
the first statement  following  the  primitive FOR  and  the  process is repeated 
until  the  limit  comparison  shows v to  be  greater  than t (for  positive s) o r   l e s s  
than t (for  negative s ) .  At this  point,  the  loop i s  exited  and  control is passed 
to  the  next  statement  after  the END or  ENDALL. 

The  loop  statement  provides a shorthand  method of accomplishing  tasks 
that  can  also  be  done  with  conditional  statements;  the  following  examples  illus- 
trate  equivalent  coding: 

Loop  Statement  Conditional  Statement 

FOR I = i B Y  2 TO N 
Statement - 1 
Stat  em  ent - 2 
Statement- 3 
END 

1 = 1  
Si. Statement- 1 
Statement -2  
Statement - 3 
I = I t  2 
IF I LQN THEN GOT0 Si 
END 

Loops  may  occur  within  other  loops;  each  level of iteration  after  the first 
is par t  of the  previous  loop.  Inner  loops  are  always  completed  before  outer 
loops.  The  resulting  loop  structure  may  have  several  ENDS  in a row.  In  gen- 
eral ,   each END generates  an  increment  and  test. If an END is labeled 

95 



- Loop  Statements 

(which  requires  that it be  written as a separate  statement)  and  transferred  to, 
incrementing  and  testing  will  begin  with  the  loop  variable  corresponding  to 
that  END.  ENDALL is used,  as  with  conditional  statements,  to  close out all 
open  loops  and  conditional  statements  with a single  statement. If an ENDALL 
is  labeled  and  transferred  to,   the  innermost  loop  variable wi l l  be incremented 
and tested  first,  then  the  next  innermost,  and s o  on. 

The loop variables  for  the  individual  loops  within a ser ies  of nested  loops 
must  not  be  the  same. If the  step  size  or  limit  are  variables,  they  will  be 
reevaluated  for  each  iteration of the  loop;  hence  their  values  may  be  altered 
in  the  loop if  desired.  The  loop  variables  may  also  be  altered  in  the  loop. 
When the  step  size  is  coded a s  a variable,  its  sign  must  be  tested  to  determine 
whether  the  loop  variable is to  be  tested  for  being  greater  or  less  than  the 
limit;  hence  execution  time  and  object  code  are  saved by coding  constant  values 
for  the  step  size. 

Control  may  not  be  transferred  from  outside a loop  to  statements  within 
its  range.  Once  in a loop,  however,  control  may  be  passed  to  statements  out- 
side of the  loop.  Once a loop is  exited,  either by normal  termination of i t e ra -  
t ions  or by transferring out of its  range,  the  value of the  loop  variable is 
undefined. 

E x a m d e  s 

(1) FOR J = M BY N TO P 
A(J) = A ( J )  t B(J) 
IF A(J) EQ 0.0 THEN GOT0  LPEND END 
B(J) = B(J- 5 )  
LPEND. END 

J is initialized  with M, the  statements  are  executed,  and when 
the  statement  LPEND  is  executed, J is incremented by N and 
tested. Note that  since  the  step  size, N, is a variable, its sign 
must  first  be  tested  to  determine  whether J is   to  be tested  for 
being  greater  or  less  than  the  limit, P. 

(2) FOR I = O  TO N 
F O R J = Q T O M  
B(1, J) = A(J, 1) 
A(J, I) = 0 ENDALL 



I 

Loop  Statements 

This is an  example of nested  loops.  The J loop  will  be  executed 
Mtl times  for  every  iteration of the I loop. A total of ( N + i )  X 
(Mt 1) iterations  will  occur. 

97 



I 

ibit/Enable  Statements 

The  inhibit/enable  statements LOCK and UNLOCK have  three  uses: 

(I) To  inhibit  or  enable  an  interrupt  previously  declared  via a chron- 
ic  statement 

(2) To  protect  an  area of memory  from  or  make  i t   available  for  writ-  
ing  (for  object  computers  having a memory-protect  capability) 

Format  

(3) To  reserve  exclusive  use of a reg is te r   o r   reg is te rs  f o r  the  pro- 
grarnm  er . 

LOCK 
UNLOCK 

interrupt-name 
storage-location TO storage-location 
register-name 

, interrupt-name 
, storage-location TO storage-location 
, register-name 

The  interrupt  and  register  names  are  implementation-dependent 
hardware  codes.  The  storage  locations  may  be  absolute  core 
addresses  indicated by constants  or  the  location of items  indicated 
by identifiers . 

The  first  use of inhibit/enable  statements is illustrated  in  Example (1) and 
the  second  in  Examples (2) and (3 ) .  With regard  to  the  third  application,  the 
LOCK statement  tells  the  compiler  that it can  no  longer  use  the  indicated  reg- 
isters  in  the  compiled  code  except  where  the  programmer  references  them. 
If compilation  cannot  continue  without a given register,  the  compiler will save 
the  programmer-specified  value  and  restore it when through  using  the  register. 
A diagnostic will be  issued if  this  has  to  be  done.  This  third  use of the  inhibit/ 
enable  statement  pair is illustrated  in  Example (4). 

Examples 

(1) LOCK OVERFLOW, CLOCK 

UNLOCK  CLOCK 

98 



- ~~ 

Inhibit  /Enable  Statements 

OVERFLOW and CLOCK must  have  been  declared  in an ON 
statement. 

(2) LOCK  DATA  TO  START 

The  memory  area  from  the  location of DATA to  the  location of 
START is protected. 

UNLOCK 0 TO 63 

The  memory  area  from  location 0 to  location 6 3  is made  avail- 
able. 

(4) DECLARE HARDWARE I, REG1 = 2 

LOCK 2 
REG1 = X  

UNLOCK 2 

By means of the HARDWARE declaration,  register 2 i s  given  the 
the  name  REGI.  Hardware  code 2 is put under  programmer  con- 
t rol  by the LOCK statement  and  will  not  be  used fo r  holding  values 
in  the  following  statements  except  where  use of REG1 is  specifi- 
cal-lv indicated bv the  programmer.  Register 2 is returned  to 
compiler  control by the UNLOCK statement. 

99 



Chronic  Statements 

The  chronic  statement, ON, is used  to  indicate  the  statements  to  be  exe- 
cuted upon the  occurrence of a specified  enabling  condition,  usually a hardware 
interrupt.  Chronic  statements  are  not  part of the  normal  sequence of program 
execution. 

Format  

ON interrupt-name 

c statem  ent 3 1 

EXIT 

The  interrupt  name is an  implementation-dependent  hardware 
code  for  the  particular  interrupt. 

When the  interrupt  occurs,  execution of the  current  task is  automatically 
suspended  and  control is passed  to  the first statement  following  the ON. When 
the EXIT statement i s  executed,  control is returned  to  the  task  which  was  in- 
terrupted. 

The  programmer  has  complete  control  over  the  conditions  under  which a 
chronic  statement is executed.  Statements  may  be  organized so that a low- 
priority  task  does  not  interrupt a high-priority  task  or  process by  using  inhibid 
enable  statements as indicated  in  the  previous  section. 

Example 

Assuming  that 1OMSI and 5MSI are  the  hardware  codes  for 10- and 
5-millisecond  interrupts: 

ON  lOMSI 
LOCK 5MSI 
CNTIO = CNTlOtl 
. UPDATE . NAVIG 
UNLOCK  5MSI 
EX1  T 

When the  10-millisecond  interrupt  occurs,  the  currently  execut- 
ing task will  be  interrupted,  the  lower  priority  5-millisecond 

100 



Chronic  Statements 
~~ ~ 

interrupt  will  be  inhibited,  and  the  update  and  navigation  routines 
will  be  called.  The  5-millisecond  interrupt  will  be  enabled  fol- 
lowing  completion of the  navigation  routine,  and  control will be 
returned  to  the  task  that  was  interrupted. 

101 



I STOP Statements I 

A STOP statement is used  to  cause a computer  halt. 

Format  

STOP  {identifier ] 

The  optional  identifier is a statement  label  without a period. 

After  a  STOP is executed, a computer  restart  operation  will  result  in a 
transfer of control  to  the  next  statement  unless  an  identifier  has  been  specified, 
in  which  case a transfer is made  to  the  statement  named. 

102 

I 



SUBPROGRAMS 

Subprograms  provide  the  capability  to  specify  particular  computations  in 
one  place  in a CLASP program  and  to  call  for  their  performance  from  many 
places.  Three  types of subprograms  may  be  defined:  procedures,  functions, 
and  closes. A procedure  operates on data  called  input  parameters,  perform- 
ing  calculations  with  them  and  producing  results  which  are  stored  in  output 
parameters.  Data  may  be  declared  locally  in a procedure  independent of data 
in  the  main  program  or  another  procedure. A function  has  input  parameters 
but  no  output parameters.  Instead, a single  result is calculated  which is 
passed via the  name of the  function,  allowing it to  be  used as an  operand of 
a formula. A close  has  neither  input  nor  output  parameters. It cannot  have 
local  data  declarations;  the  data it manipulates  must  be  declared  in  the  main 
program. 

In  addition  to  the  subprograms  that  may  be  defined by the  programmer, 
several  library  subprograms  are  available  for  performing  commonly  used, 
simple  functions  such  as  rounding  and  limiting. 

103 



Procedure  Declarations 

A procedure  declaration is used  to  describe  the  input  and  output  param- 
e t e r s  of a procedure,  data  local  to  the  procedure,  and  the  computations  to  be 
performed when the  procedure is called.  The  procedure  declaration is di- 
vided  into  three  parts:  the  procedure  description,  the  heading,  and  the body. 

Format  (Procedure  Description). 

PROC .identifier {( {input-parameter {, input  parameter 3 1 a, 

0 

I-utput-parameter I ,  output-parameter ]"I) 1 {INLINE 3 0 

The  identifier  which  follows  the  primitive  PROC is  the  procedure 
name  and  must  be  preceded  by a period.  The  optional  input  and 
output  parameters  with  which  the  procedure  is  declared  are  en- 
closed  in  parentheses  and  are  called  dummy  parameters.   Each 
input  parameter  may  be a simple  item  name,  an  array  name,  or 
a close  name; a close  name  must  be  preceded by a period.  The 
equals  sign  separates  input  from  output  parameters and is omit- 
ted if no  output  parameters  are  specified.  Each  output  param- 
eter  may  be a simple  i tem  name,  an  array  name,  or a statement 
label; a statement  label  must  be  followed  by a period.  The 
optional  attribute  INLINE  causes  the  procedure  to  be  inserted 
directly  in-line  whenever it is   called;  any  dummy  parameters  are 
directly  replaced  with  actual  parameters  before  the  code is gen- 
erated. If INLINE is not  specified,  procedures  are  in  closed 
form  and  appear  only  once in  the  code. When they  are  called, 
execution  time  must  be  spent  transferring  back  and  forth  and 
passing  parameters.  This is not  required  with  in-line  proce- 
dure s . 

The  procedure  heading  contains  data  declarations of all  input  and  output 
p a r m e t e r s  except  close  names and statement  labels;   these  are  declared im- 
plicitly by the  periods. Any arrays  used as dummy  parameters  may  be  de- 
clared  with  variable  dimensions i f  the  dimensions  are  described  via  input 
parameters.  Variables  local  to  the  procedure  are  also  declared  in  the  head- 
ing.  These  local  variables  cannot  be  referenced  in  the  main  program  or  in 
any  other  procedure. 

The  procedure body is a list of CLASP statements; it does  not  include 
procedure  or  function  declarations  but  may  call  them.  These  statements  use 

i 04 



I 

Procedure  Declarations 

the  dummy  input  parameters,  which  are  converted  to  the  actual  input  param- 
e te rs  when the  procedure is called.  Therefore,  the  actual  input  parameters 
must  agree by declaration  with  the  declarations of the  dummy  input  parameters. 
Variables  declared in the  main  program  may  be  referenced  in  the  procedure 
body; such  variables are called  global  variables. If a  dummy  parameter  or 
local  variable  has  the  same  name  as a global  variable,  the  compiler  will 
assume  that  the  parameter  or  local  variable,  not  the  global  variable, is being 
referenced when the  name is used  in  the  procedure. 

The  last  statement of the  procedure body is  always  EXIT. When it is 
executed,  control  returns  to  the  statement  following  the  procedure  call. 

Examples 

(I) PROC e CMPUTE ( X ,  Y ,  .CLS  =RES,  ERR.) 
DECLARE  FIXED, X 24 10, Y 22 0 ,  RES ( I O )  24 10 
DECLARE  FIXED, L i  24 I O ,  L2 24 0 ,  K INTEGER 
IF X LS 0 THEN GOT0  ERR END 
L i  = x  

F O R K = O  BY 1 TO 9 
RES(K) = K  :k L i  / Y -- X END 
EXIT 

CMPUTE is  declared  as  a  procedure  having  as  input  parameters 
X and Y (which a r e  fixed  point)  and CLS (which i s  a  close). Its 
output parameters   a re  RES (a fixed-point  array)  and  ERR (a 
label) .   Li ,   L2,  and K are  declared  locally. In the body of the 
procedure, X is  tested  and i f  less  than 0 ,  control is passed  to 
statement  ERR,  which is outside of the  procedure.   This  is   an 
abnormal  exit.  Later on in  the body,  output a r r ay  RES is given 
values  in  the FOR loop.  The  procedure  is  then  exited. 

(2) PROC . BOOST (A, F, C )  
DECLARE I, A, B ,  C 

EXIT 

This is an example of a  procedure  with  no  output  parameters. 

105 



P r o c e d u r e   D e c l a r a t i o n s  

(3 )  PROC GUIDE 

EXIT  

P r o c e d u r e  GUIDE is d e c l a r e d  with no f o r m a l  parameters. 

106 

I 



Procedure  Calls 

A  procedure is called  by  using its name  in a statement  with  actual  param- 
eters  substituted  for  the  dummy  parameters  with  which it was  declared. 

Format  

. procedure-name c ({input-parameter {, input-parameter ] ] 
W 

0 

{=output-parameter I, output-parameter 3 3 )  3 W 

0 

The  procedure  name is the  unique  identifier  with  which  the  pro- 
cedure  was  declared;  it   must  be  preceded by a period.  The 
actual  input  parameters  may  be  constants,  variables,  array 
names,  formulas,  or  close  names  (preceded by a period).  The 
equals  sign  separates  the  input  parameters  from  the  output  pa- 
rameters  and is omitted i f  no  output  parameters  are  spdcified. 
The  actual  output  parameters  may  be  variables,  array  names, 
or  statement  labels (followed by a period). 

A  reference  made  to a dummy  parameter  in  the  procedure body generates 
a reference  to  the  actual  parameter  whose  position  in  the  procedure  call  pa- 
rameter  list  corresponds  to  the  position of the  dummy  parameter  in  the  de- 
scription  portion of the  procedure  declaration.  The  table  below  indicates how 
the  dummy  parameters  and  the  actual  parameters  must  agree,  and  the last 
column  indicates how data  are  transmitted  to  the  procedure. 

PROCEDURE  PARAMETERS 

Input 

" - 
~~ 

output 

Dummy  Parameter 

Nontextual  item  name 
Array  name 
Textual  item  name 
Close  name 

Nontextual  item  name 
Array  name 
Textual  item  name 
Statement  label 

- ~ -~ " ~ . 

Actual  Parameter  Called By 

Nont extual  formula 
Name Array  name 
Value 

Name Close  name 
Name Textual  formula 

Nontextual  variable Value 
Array  name Name 
Textual  variable Name 
Statement  label Name 

107 



- Procedure  Calls 

Arrays  and  textual  items  are  called  by  name.  The  data are never  moved; 
only  the  data  addresses  are  passed  through  the  parameter.  These  parameters 
are  operated on a s  i f  the  actual  parameter  names  had  been  substituted  for  the 
dummy  parameter  names  in  the  procedure  body.  The  procedure  does not 
know  how the  actual  parameter is constructed when the  dummy  parameter is 
called.  Thus, i f  the  dummy  parameter is a two-dimensional  array,  for  ex- 
ample,   the  actual  parameter  must  be  an  array with  the  same  dimensions. 

Nontextual  items  are  called by value.  The  procedure is executed as if 
the  values of the  actual  input  parameter  formulas  were  assigned  to  the  dummy 
input  parameter  items  before  execution.  The  values of the  dummy  output  pa- 
rameters  are  assigned  to  the  variables  that   are  actual output parameters  
after  execution.  Consequently,  there  must  be  compatibility  between  dummy 
parameter  i tems and  actual  parameter  variables o r  formulas  identical  to  that 
required  for  assignment  statements. 

The  actual  input  parameters  are  evaluated  in a left-to-right  sequence. 
Following  evaluation of the  input  parameters,  any  indices of the  actual  output 
parameters  are  evaluated  from  left  to  right.  Values  then  are  assigned  to 
dummy  input  parameters  before  execution of the  procedure body. Upon return 
from  the  procedure,  the  dummy  output  parameters  are  assigned  to  the  corre- 
sponding  actwal  output  variables. 

A procedure  exits  normally by execution of the  EXIT  statement;  all 
called-by-value  output  parameters  are  set  and  control  is  returned  to  the 
statement  following  the  procedure  call.  Statement  names  appearing  in  dummy 
output parameter  l ists   are  called  alternate  exits.  If a GOTO or  STOP  that 
references a dummy  output  parameter  is  executed  in  the  procedure,  control is 
returned  to  the  statement  label  in  the  actual  output  parameter. If control is 
passed  to  the  main  program  through a GOTO or  STOP  statement,  the  final 
assignment  process is bypassed  and  the  actual  called-by-value  output  param- 
e t e r s   a r e  not  changed.  In  addition, it is possible  that  main  program  loop 
variables  that  were  active at the  time of calling  the  procedure  will  not  have 
their  correct  values;  this  can  happen if  the  procedure  itself  activates  any  loop 
variables. If so, the  main  program  loop  variables will be  saved  but  not  re- 
stored i f  the  procedure is exited by a direct   transfer  to  the  main  program. If 
a procedure is exited  normally  through  EXIT, all loop  variables  are  restored. 

Examples 

(.i) . LOCATE  (LAT(A), LONG(A) = SECTOR, RANGE) 

108 



Procedure  Calls 

This is a two-input,  two-output  procedure  call  requesting a pro- 
cedure  identified  as LOCATE to  operate.  Assuming  that 
LOCATE  had  been  declared a s  

PROC . LOCATE (LT,LG = S , R )  

LAT(A)  and LONG(A) are  actual Tnput parameters  corresponding 
to the  dummy  parameters  LT  and  LC,  respectively.  Similarly, 
SECTOR and RANGE a r e  the  actual  output  parameters  corres- 
ponding  to  dummy  output  parameters S and  R. 

(2) .DUMP 

This is a no-input,  no-output  procedure  call  requesting  proce- 
dure DUMP to  operate. 

(3) .DATE (=DAY, MONTH, YEAR) 
> '  .i 1 

This is a no-input,  three-output  procedure  call.  The  output  from 
procedure DATE is placed  into  simple  items DAY, MONTH, and 
YEAR. 

(4) .PREDIC  (SHIPID(X),  MPH(X) :% 1 . 1 5 2  - OWNMFH, 
BEARING, 'VERIFY' = ERRc) 

Procedure  PREDIC is a four-input,  one-output  procedure.  The 
output  from  the  procedure  is a statement  label  defined  in  the 
main  program;  note  that it i s  followed by a period. When the 
operation of the  procedure is completed,  the  procedure  will 
either  make a normal  exit  to  the  statement  following  the  call  or 
will  exit  to  the  statement  labeled  ERR  based on some  logical 
decision. 

(5) .DELTA (X,2  =I, ABLE(1)) 

Procedure  DELTA is called  with  input  parameters X and 2 and 
output  parameters I and  ABLE(1).  Note  that  the  index of a r r a y  
ABLE is calculated  before  the  procedure is called;  thus when 
ABLE(1) is set  on  procedure  exit,  the  index will refer  to  the old 
value of I, not  the new  one  calculated  in  the  procedure. 

109 



I Functions I 
Functions  are similar to  procedures;  they  operate on input  parameters 

produce a result  which is returned  to  the  calling  program via the  function 
name. 

to 

A function  declaration is like a procedure  declaration  'except that output 
parameters  are  not  included  and  the  function  name,  besides  being  declared  in 
the  procedure  description,  must  be  declared  in  the  heading  along  with  the 
dummy  input  parameters  and  local  variables. In  the  body,  the  function  name 
must  be  assigned  a  value  at  least  once. The last  value  the  function  'name is 
assigned  before  exiting  is  the  value  returned to the  calling  program. 

A  function is called by using its name  with  actual  parameters  in a con- 
text  where a formula is expected;  it  cannot  be  called  by  using its name  alone 
in a statement. When a  function is exited,  control  is  not  returned  to  the  next 
statement,  as  with  procedures,  but to that  point  in  the  calling  statement  which 
uses the function%  value.  In all other  respects,  functions  operate  in  the  same 
manneras  procedures.  

Examples 

(1) PROC . SIN(X) 
DECLARE  FIXED, X 24 21,  SIN 23, Y 2 3  

SIN = Y / 2  
EXIT 

Function . SIN(X) is declared. In the  heading, its input  param- 
eter, X, function  name, SIN, and  local  variable, Y, are  declared. 
The  fact  that SIN is declared  in  the  heading  indicates  that . SIN(X) 
is a function,  not a procedure. In the  body SIN is given a value 
and  the  function is exited. 

IF X3 - . SIN(2*PI*F) GR 0.5 THEN GOT0 LI  END 

In this IF statement,  the  function . SIN(X) is called  with  an  input 
parameter of 2sPI*F. When control  is  returned,  the  function% 
value  will  be  subtracted  from X3 and  the  remainder of the IF 
statement  will  be  carried  out. 

110 



Close  Declarations 

A close is a program-dependent  subprogram  in  that  the  data it manipulates 
must  be  contained  in  variables  whose  identifiers  are known both  to  the  close 
and  to  the  routine  calling it. Thus  these  data  must  have  been  declared  in  the 
main  program  heading  or a procedure  heading;  not  within  the  close. A close 
has  no input  or  output  parameters  and is called  only  from  within  the  program 
in  which it is contained. A close  may  be  declared  within a procedure,  in 
which  case it may be called  only  from  within  that  procedure. 

The  declaration  consists of the  primitive CLOSE followed by any  number 
of statements  and  an  EXIT  statement. 

Format  

CLOSE .identifier 

{statement 3 m 

1 

EXIT I I 

The  identifier  becomes  the  name of the  close  and  must  be  pre- 
ceded by a period.  Execution of the  EXIT  statement  causes a 
return  to  the  statement  following  the  close  call. 

If statements  in  the body of the  close do  not  reference  any  loop  variables, 
the  location of the  close is not  important. If they  reference  loop  variables 
which are  activated  outside  the  close,  the  close  declaration  must  be  within  the 
loop  statement  group so that  the  variables will be  defined.  In  this  case  the 
close  cannot  be  called  from  outside  the  loop. 

A close  does  not  guarantee-the  preservation of loop  variables  that  may  be 
active when it is called,  whereas a procedure  does.  Closes  that do not  acti- 
vate  any  such  variables,  however,  will  not  destroy  other  active  loop  variables. 
Thus, a close  that  activates  loop  variables  should  not  be  called  from  another 
loop  statement  group. 

Close  declarations  may  contain  other  close  declarations.  Each  close  may 
be  called  from  any  level as long as the  calls  are  not  recursive. 

A close  name  declared  in a procedure's  dummy  input  parameter list is 
called by a close  call  or  switch,  and  the  corresponding  close  specified  in  the 
actual  input  parameter list is executed. If a close  thus  called  aativates  loop 



Close  Declarations 

variables,  caution is required:  since a close  does  not  preserve  the  active 
loop  variables,  not  only  might  the  variables  active  in  the  procedure  be  de- 
stroyed,  but  also  those  active when the  procedure  was  called.  This  can  be 
avoided by using  simple  items  in  lieu of loop  variables  in  the  close. 

Example 

CLOSE .EQUl7 
T = T t D T  
L = . LN(TAU/(TAU-T)) 
J i = (TAU$<:') - T 
Si = Jl-(T*L) 
Q i  = (T*:F2/2)+(TAU*SS) 
J, S, Q = VEX:::Ji, VEX%Si,  VEX%Ql 
EXIT 



A close  may  be  called  through  the  program  before  or after it is declared. 
I t  is called by specifying  the  close  name as a separate  statement o r  as an 
identifier  in a switch list. 

Format  

. close-name 

The  period  precedes  the  close  name when used  alone  in a state- 
ment. It is not  required  in a switch. 

Normally a close  will  return  control  to  the  statement  following  the  call- 
ing  statement.  However, a close  may  terminate  abnormally  by  transferring 
control t o  a statement  label  out of its range. 

Examples 

(1) .EQU17 

Close E Q U l 7  is called 

( 2 )  GOTO (ABORT,  CALC,  C0MP)I 

Closes ABORT, CALC, or  COMP will  be  called i f  I = 0, 1, o r  2,  
respectively. Note that  the  period  is  not  used  with  the  close 
names  since  they  appear  in a switched GOTO. After  the  close 
exits,  control  will  be  transferred  to  the  statement  following  the 
switched GOTO. 

113 



Library  Subprograms 

Several  built-in  subprograms are defined  in CLASP to  perform  basic  
ari thmetic and  data  manipulation  functions.  The  subprogram  names a r e  con- 
sidered  primitives  and  are  not  prefixed  withaperiodwhencalled.  The  primi- 
t ives  are:  

REMQUO 
REM 
SIGN 
ABS 
LIM 
RND 
PACK 
UNPACK 
UNF'ACX 

These   a re  all in-line  subprograms; when  the  primitives are called  the  appro- 
priate code is substituted and  no t ransfer  of control  takes  place. 

REMQVO and PACK are  procedures;  the  rest  are  all  in-line  functions. 

Format  (REMQUO) 

REMQUO . (i i 2 - - V i '  v2) 

where i i  and i2 are  integer  formulas  and  vi  and v2 are  integer 
variables. 

Calling REMQUO results  in vi being  set to  the  integer  part of the  divi- 
sion of i t  by i2 and  v2  set  to  the  remainder of that  division. 

Example 

REMQUO (5, 3 =I,  J) 

This  results  in I being  set  to 1 and J being  set  to 2. 

Format  (REM) 

REM (i 1, i2) 

where ii and i 2  are  integer  formulas.  

114 



REM ( i l , i2)  returns the remainder of the division of i1 by i2;  the result 
is il modulo i g  . 
Format (SIGN) 

SIGN ( f) 

where f is a numeric f o r m u l a .  

t t I if  f 7'0 
SIGN(f) = 0 if f = 0 

- 1  i f f  < O  

Format (ABS) 

where f is a numeric formula. 

ABS(f) = -f  if  f < O  
f otherwise 

Format (LIM) 

L I M   ( f i  # C f 2  3 c ,  f 3  1) 

w h e r e  the f's are numeric formulas and f < f 
2 3' 

f2   i f   f l  f .2 
L I M  (f ,f. , f ) = f 3  i f f 1  ' f 3  

1 2 3  
f o t h e r w i s e  

The LIM function r e t u r n s  f limited to  the range of f to f  If  f is i 2 3' 2 miss ing :  

f  if f l  > f  
LIM (fl  f3) = 3 

115 



Library  Subprograms 

Similarly, i f  f is missing: 3 

LIM (f l ,  f2) = 

Format  (RND to a Constant  Value) 

RND (f, c) 

f is a numeric  formula  and c i s  a constant  numeric  formula. 

RND (f, c) returns f rounded  to  accuracy  c.  It is computed a s  follows: 
Let  bit  position i of f correspond  to c such  that  the  value of bit i is greater 
than c and  the  value of bit i+ 1 is les  s than o r  equal  to  c. A quantity  which is 
all zeros  except  for a 1 in  bit  position  it1  is  added  to f .  Then, all bits of the 
result  to the  right of (but  not  including)  bit i are  cleared  to 0. This  value is 
returned  as  the  value of RND. 

Format  (RND for  Assignment) 

RND (f,  v) 

f is  a numeric  formula  and v is a numeric  variable. 

The  purpose of this  function is to  round f f o r  assignment  to  v. RND (f,  v) 
returns f rounded  to  an  accuracy  which  is  the  value of the  least  significant  bit 
of item v. 

Format  (PACK) 

PACK (fy c i ,   c 2 = v )  

f i s  a numeric o r  logical  formula,  the  c's  are  integer  constants, 
c 5 c  and v i s  a variable. 1 2' 

PACK ( f ,  cl,  cz=v)  is a procedure  which  results in the  setting of bi ts   c i  
through  c2 of v to  the  value of the c c l t i   low-order   b i t s  of f .  All  other  bits 
of v a r e  not a l te red .   Bi t s   c l   th rous  c2 of v should  be  initially  zero,  as 

116 



I 

Library  Subprograms 

PACK will  not  clear them 'before  ORing f into  them.  The  function is equivalent 
to the following  assignment  statement: 

v = (f LAND 2*C~~(Cz-Clti) - 1) LSH (nf-c2)) LOR v 

where IT is the bit  number of the  low-order  bit of f. f 

Example 

Assuming a 6-bit  machine: 

A = BfOO1Oll~ 
B = B1OOOOIO1 
PACK  (A,  0,3=B) 

resul ts   in  B being  set  to 101110 
2' 

Format  (UNPACK) 

UNPACK ( f ,  c l ,  c2) 

f is a numeric  formula  and  the  cfs  are  integer  constants. 

UNPACK ( f ,  cl, c2) returns  bits  c through c of f right-adjusted. 
I 2 

Example 

Assuming a 24-bit  machine: 

ABLE = 0 ' 5 3 3 0 0 1 '  
BAKER = UNPACK (ABLE, 6,14) 

Format  (UNPACX) 

UNPACX (f, c l ,  c2) 

f is a numeric  formula  and  the  cfs are integer  constants. 

117 



Library Subprograms 

UNPACX (f, c i ,  cz) is the same  as UNPACK (f, c c ) except that sign  ex- 
I' 2 tension occurs. That i s ,  if bit c is a I, the value  returned will be negative. 

In the example  above, I 

BAKER = UNPACX (ABLE, 6,14) 

results in BAKER being set to 77777533 8' 

I 1 8  



DIRECTIVES 

Directivesafford the programmer  control  over the operation of the com- 
piler. CLASP directives  are provided for use in debugging a  program and 
determining its execution time,  for optimizing  execution time and storage re- 
quirements, and €or  inserting  direct machine  code or assembly language intc 
a CLASP program. 

119 



Debugging  Directives 

The  debugging  directives TRACE  and UNTRACE are  used  to  cause  the 
printing of the  narnes  and  values of indicated  variables  and  the  statement 
labels  encountered  during  execution of the  code  they  surround.  They  may 
appear  anywhere  in  a  grouping of executable  statements.  They do not  cause 
the  generation of object  code;  rather,  they  generate  information  to  be  used by 
a computer  simulator  in  producing  appropriate  diagnostic  messages when 
simulation of the  object  program's  execution is performed. 

Format  

TRACE {variable {, variable jo 3 aD 

C statem  ent ] 
m 

i 

UNTRACE 

(1) TRACE TEST, FIND 
statement 
statement 
statement 
UNTRACE 

The  compiler  will  output  information  such  that when object  pro- 
gram  execution  is  simulated,  the  values  and  names of variables 
TEST  and FIND will  be  printed  out when  they are  assigned,  along 
with all statement  labels  encountered. 

(2) TRACE 
statement 
statement 
UNTRACE 

The  compiler  will  output  information  for a simulator  such  that 
a t race would be  initiated  and  would  print  out  statement  labels 
for  the  code  enclosed by the  TRACE  and UNTRACE commands. 

120 



Timing  Directives 

The  timing  directives COUNT and UNCOUNT are  used  to  t ime  the  exe- 
cution of any  object  program  block  they  surround.  They  generate  information 
for  use  during  simulation of the  object  program's  execution  and  have no effect 
on the  generation of object  code itself. The  initiating  directive COUNT turns 
on a specified  timer  in a computer  simulator,  and  the  terminating  statement 
UNCOUNT causes  the  elapsed  "real  timett  consumed  during  simulated  exe- 
cution of the  indicated  program  block  to  be  printed  out.  The  timers  can  be 
used  in  an  overlapping  fashion. 

Format  

COUNT (n) 

c statement I 1 

UNCOUNT (n) 

n,  an  integer  constant  between 0 and 5 ,  indicates  the  particular 
timer  to  be  used  for  accumulating  execution  time. 

Example 

COUNT (3)  
statement 
statement 
UNCOUNT (3) 

The COUNT directive  initiates  the  recording of time  required  to 
execute  the  intervening  statements  and  specifies  the  use of 
t imer  3.  The  printout of the  elapsed  time is made  during  simu- 
lation of the  object  program's  execution  after  the  statement 
preceding  the UNCOUNT directive is executed. 

12 I 



Optimization  Directives 

Three  pairs  of optimization  directives  are  provided:  OPTIMIZE TIME 
and UNTIME for  designating  areas of  code  to  be  optimized  for  object  program 
execution  time;  OPTIMIZE  SPACE  and UNSPACE for  designating  areas  to be 
optimized  for  object  program  storage  requirements;  and  Sic  and UNSIC for 
exempting  specified  statements  from  optimization. 

Format   (Time and  Space  Optimization) 

OPTIMIZE  TIME(n)  OPTIMIZE  SPACE(n) 

statement 3 m m 

1 
{statement 3 1 

UNTIME UNSPACE 

The  integer  constant n specifies  the  degree  or  level of optimi- 
zation  to  be  attempted.  The  permitted  values  for n are  compiler 
dependent. 

The  value  specified  for n is significant  only by comparison  with  the  values 
specified  in  other  optimization  directives.  For  example,  OPTIMIZE  TIME(2q 
might  indicate  that  time  optimization  for a cer ta in   area of code  was  much 
more  important  than i f  OPTIMIZE  TIME(1)  had  been  used.  The  two  optimi- 
zation  directives  can be overlapped. If OPTIMIZE TIMB(2O) and OPTIMIZE 
SPACE(1)  were  applied  to  the  same  region,  that  region would be  optimized 
chiefly  with  regard  to  time,  with  much  less  attention  to  space  optimization. 

Format  (Optimization  Exemption) 

SI c 

{ statement 3 m 

1 

UNSI C 

No optimization  will  be  performed  for  the  statements  between  the SIC and 
the UNSIC, even  though  optimization  directives  occur  between  them  or 
surround  them. 

122 



Direct Code Directives 

The  direct  code  directives  DIRECT  and END are   used  to   del imit   areas  of 
the  program  written  in  direct  machine  code  or  assembly  language  rather  than 
in  CLASP.  Such  code is machine  dependent  and will vary  greatly  in  both  con- 
tent  and  form;  the  conventions  for  the  particular  hardware  for which  CLASP 
is implemented  must  be  followed. 

Format  

DIRECT 

{ {label 3 {hardware-instruction 
1 

END 

Items  declared  in  the CLASP program  may  be  referenced  in  the  direct 
code by their  identifiers,  and  transfers  may  be  made  from  direct  code  to 
labeled CLASP statements.  Similarly, a CLASP GOT0  may  reference a 
direct  code  label. 

E x a m d e  

DIRECT 
A32. L ACi,L32 

ST ACI, M52 
END 

This is an  example of direct  code  written  in IBM 360 BAL. 

123 





PART - 111 - COMPILER CONSIDERATIONS 

Programs  wr i t ten   in  CLASP (source  code)  will  be  translated  into  the 
machine  language  (object  code) of a specific  target  computer  by a compiler. 
This  compiler  will  not  execute on the  target  computer, but  on a large-scale 
general-purpose  computer.  Time  for  compilation is  much  less  important 
than  the  execution  time  and  size of the  resultant  machine  code;  hence  compil- 
e r  .writing  techniques  that  are  unfeasible  ,for  other  applications  can  profitably 
be  used. 

Optimization  Techniques 

Various  optimization  techniques  should  be  used  to  increase  the  efficiency 
of the  object  code.  Some of these  techniques  improve  an  object  program  in 
ways  that  an  intelligent  programmer  could  have  achieved by writing a different 
and better  source  program;  others do so by  improving  the  source-to-object 
translation  process  in  ways  that  duplicate  what a very  competent  assembly 
language  programmer would  do. This  latter  type of optimization is particu- 
larly  important  for  the CLASP compiler. 

Many optimization  techniques  require  an  increase  in  memory to save  ex- 
ecution  time  or  vice  versa;  still   others  may  save  execution  time  in one a rea  
of the  program  at  the  expense of an  increase  in  the  execution  time of other 
areas.   The CLASP  directives  OPTIMIZE  TIME  (n)  and  OPTIMIZE  SPACE  (n) 
should  be  used  by  the  compiler  to  determine  the  appropriate  technique  for  any 
given  area,   or  w i l l  be  used  by a particular  technique  to  determine  the  course 
of action  to  be  followed.  For  example, a vector  operation  such  as 

can  be  implemented  in two  ways.  In a reas  of a program with no optimization 
control  or  space  optimization,  the  code  generated  for  the  operation would be 
a loop  requiring  the  loading,  incrementing,  and  testing of an  index  register. 
In   a reas  of the  program  requiring  time  optimization,  repetitive  code  might  be 
generated ( i f  the a r r ay   were  small enough)  to  avoid  the  execution  time  over- 
head of loops. 

Scaling  optimization,  the  selection of radix  points  in  fixed-point  data  to 
minimize  shifting  due  to  rescaling  in  arithmetic  operations, is an  important 
technique  for  fixed-point  target  computers. When declaring  fixed-point  items, 
the  CLASP  user  will  not  specify  the  allocation of more  than  the  number of bits 
actually  required  for  the  expected  range of values  and  necessary  accuracy. 
The  compiler  must  use  the  resultant  flexibility  to  generate a consistent  set of 
scalings  that  minimizes  intermediate  shifting of items  in  arithmetic  formulas. 

125 



The  scalings  chosen  should  satisfy  following  criteria: 

(1) For  those  segments of the  source  program  controlled  by  the 
time  optimization  directive,  the  following  should  be  minimized: 

where m is the  number of segments, i, which are   t ime-  
optimized; N. is  the  argument of the  OPTIMIZE  TIME 
directive  in  tte  ith  segment;  and Ci is the  number of 
memory  cycles  required  to  execute all shift  instructions 
used  to  rescale  fixed-point  quantities  in  the  ith  segment. 

( 2 )  Assuming  the  scalings  determined  to  satisfy (1) are  f ixed, 
for  those  segments of the  source  program  controlled  by 
the  space  optimization  directive,  the  following  should  be 
minimiz  ed : 

where k is the  number of segments, i, which are   space-  
optimized; Pi is  the  argument of the  OPTIMIZE  SPACE 
directive  in  the  ith  segment;  and  Si is the  total  number of 
shift  instructions  used  to  rescale  fixed-point  quantities  in 
the  ith  segment. 

( 3 )  Assuming  the  scalings  determined  to  satisfy ( 1) and ( 2 )  
are  fixed,  for  those  segments of the  source  program  not 
using  time  or  space  optimization,  the  following  should  be 
minimized : 

c 

where 6 is  the  number of segments of source  code, i ,  in 
which  neither  time  nor  space  optimization is present;  and 
Ri is the  number of shift  instructions  used  for  rescaling 
fixed-point  quantities in the  ith  segment. 

Practically,   i t   may not  be  possible  to  exactly  satisfy  these  criteria, but 
the  compiler  should  have  algorithms which pick  scalings  which  reduce  inter- 
mediate  shifting.  The  scaling  optimization  phases  should  scan  the  arithmetic 
calculations  in  the CLASP source  program  to  determine  which of them  use 

126 



fixed-point  data  having  more  than  one  possible  scaling.  For  each  such  calcu- 
lation,  it  should  determine  allowable  scalings  which  minimize  the  number of 
.rescaling  shift  instructions  (when  space  optmization is required)   or  which 
minimize  the  time  required  to  execute  rescaling  shift  instructions  (when  time 
optimization is  required).  The  optimizer  phases  should  then  assign  scalings. 
Failing  to  eliminate all scaling  readjustments  (and  this is l ikely  for  large  pro- 
grams),  the  optimizer  should  give  priority  to  scalings  spe'cified  in  calculations 
in  which a high  level of optimization is required,  and  to  scalings  which  satisfy 
requirements  from a comparatively  large  number of calculations. 

Another  important  optimization  technique  exists  with  regard to the  storage 
allocation of i tems and  constants.  For  target  computers  that  use  an  extension 
or  base  register  for  normal  instruction  addressing  because  the  address  f ield of. 
their  instructions is not  large enough to  reference all storage  locations , the 
compiler  should  allocate  items  to  memory  locations so as to'minimize  the 
number of instructions  needed  to  load  and  maintain  such  registers.  Thus,  items 
may not  be  allocated to core  sequentially  as  they  are  declared, but should  be 
strategically  located.  Heuristics,  which  to  some  extent  are a function of the 
target  computer  memory  organization,  should  be  developed  to  group  quantities 
which are  used  together  in  calculations s o  that  they  may  use  the  same  base  ad- 
d r e s s   o r  none  at all. Items  declared  with  the  attribute CONSTANT may  be 
duplicated  in  several  areas  in  the  memory  to  place  them  near  instructions 
referencing  them.  Items  declared  with  the  attribute PARAMETER can  also  be 
duplicated,  although  this is less  desirable.  If conflicts  arise as to  the  best 
location  for  items,  those  storage  assignments  should  be  given  priority which 
minimize  base  address  manipulations  in  segments of the  program  under  opti- 
mization  control  and  minimize  these  manipulations  for a large  number of calcu- 
lations. 

On multiregister  target  computers  such  as  the IBM 4 Pi, effective  register 
assignment is an  important  optimization  technique.  Those  variables  and  con- 
stants  which  are  referenced  most  frequently  within a loop  should  be  assigned 
to  registers  in  such a way a s  to  minimize  load  and  store  instructions  required. 
The  most  obvious  example of effective  register  allocation is to  assign  the  loop 
variable of a FOR statement  to  an  index  register  because  the  loop  variable is 
often  referenced as an  index  for  arrays.   Loops  are good candidates  for  regis- 
ter allocation  because a loop is executed  several  times;  thus  the  saving of a 
few  load  and  store  instructions  in a loop  effects  an  execution  time  savings of 
these  instructions  multiplied  by  the  number of iterations  through  the  loop. 
Additionally,  information  supplied  by  the  CLASP  programmer  should be used 
to  aid  in  effective  register  usage. When the  programmer  uses  the INDEX 
declaration  to  inform  the  compiler of integer  variables  which  have a high 
priority,  the  compiler  should  attempt  to  maintain  them  in  index  registers. 

127 



The  compiler  should  employ  the  basic  optimization  technique of regis ter  
recollection,  keeping  track of the  quantities  which  remain  in  registers at the 
end of each  statement  and  using  this  information  to  decrease  the  number of 
load  instructions  generated.  Thus, i f  a value  remains  undisturbed  in a regis-  
t e r   f rom a previous  statement,  there  may  be no  need  to  recalculate  or  reload 
that  value i f  i t  is required  in  the  current  statement  being  processed. If a 
statement  label  appears  between  the  statement  in  which  the  register  was  loaded 
and  the  current  statement,  the  register  may  not  contain  the  proper  value  since 
a transfer  may  occur  to  the  label  from  other  parts of the  program;  the  correct 
value  must  be  loaded as a consequence of that  label's  occurrence. 

As mentioned  earlier,  some  optimization  techniques  accomplish  largely 
the  same  things  that  could  have  been  done  in  writing  the  source  program,  and 
the CLASP compiler,  although  putting  less  emphasis on these  techniques,  must 
make  provision  for  them.  Elimination of common  expressions is one  such 
optimization  technique  that  should  be  implemented.  For  example,  computing 
the  assignment  statement 

X = T t ( Y t 3 * Z ) t W   / ( Y t 3 * Z )  

appears  to  require  four  additions, two multiplications,  and  one  division. How- 
ever,  the  expression Y t 3 * Z appears  twice  in  the  statement.  It  should  be 
computed  once  and  saved  for  use  in  the  division  operation,  with  the  result  that 
one  less  multiplication  and one less  addition would be  required. 

Other  such  optimization  techniques  that  should  be  implemented  include  re- 
ducing  the  strength of operations,  that i s ,  replacing  some  exponentiations  with 
multiplications  and  some  multiplications  with  additions  or  shifts.  Fixed-point 
divisions by a constant  should  be  replaced  by a multiply  operation i f  this  oper- 
ation  has a shorter  execution  time. Also, compile  time  evaluations of oper- 
ations  between  constants  should  be  done.  The  compiler  should  permute  oper- 
ands of multiplication  and  addition  operations in order  to  combine  constants  at 
compile  time. For example,  the  assignment  statement 

x = 3.0 * Y / 4.0 

should  be  changed  into  the  equivalent  statement 

x = 0.75 * Y 
without  the  divide  operation. 

128 



Compiler  Outputs 

The  most  important  output of the  compiler  will  be  the  object  program  in a 
form  suitable  for  the  target  computer.  This  output  should  be  in  assembly  lan- 
guage  format  in  spite of the  increase  in  compilation  time  that  this  might re- 
quire. If an  assembler  is available  for  the  target  computer,  the  compiler 
should  produce  assembly  code  in a format  compatible  with  it. If an  assembler 
does  not  exist,  one  should  be  written. 

The  printed  output  generated  by  the  compiler  must  be  much  more  extensive 
than  that  obtained  from  conventional  compilers,  for  which  the  goal is usually 
to  produce  simple,  machine-independent  listings  oriented  to  the  least  sophisti- 
cated  user.  The CLASP compiler  output  should  be  oriented  to  the  experienced 
programmer and  should  fully  document  the  program's  machine-dependent 
aspects.   In  areas  in which CLASP gives  the  programmer  control on a close- 
to-hardware  basis,  the  output  listings  should  tell  him i f  he is  accomplishing 
what  he  wants  correctly.  In  other  areas,  the  programmer  simply  declares 
conditions  that  the  program  must  meet,  and  the  output  listings  should  indicate 
the  decisions  made  by  the  compiler  to  achieve  these  requirements.  Compre- 
hensive  output  listings of both  compiler  final  results  and  intermediate  results 
should  be  printed.  These  will  be of great  benefit  in  studying  the  efficacy 
of the  optimization  and  scaling  algorithms. 

The  printed  output  listing of the  source  program  should  be  extensively 
annotated  with  information  obtained  at  various  compilation  phases.  One  type 
of annotation  is  the  print of errors  detected  in  the  source  program.  Three 
categories of e r r o r s  should  be  printed:  warnings,  syntactic  errors,  and  com- 
piler  capacity  overflow. 

Warnings  should  be  printed when it  appears  to  the  compiler  that  an  exe- 
cution  error  may  occur,  when  potentially  marginal  arithmetic  calculations  are 
performed,  and when gross  inefficiencies  are  introduced  into  the  source  code. 
For  calculations  involving  division of intermediate  expressions,  the  compiler 
should  print  the  numerical  range of those  intermediate  expressions  for  which 
the  generated  object  code  will  be  valid. 

Syntactic  error  messages  should  be  printed when  the  compiler i s  unable  to 
interpret  the  meaning of the  source  code  or  can  only  assign  an  ambiguous  mean- 
ing  to  it,  for  example, when parenthesesdo  not  balance; when a misspelled  or 
undefined  primitive  has  been  used; o r  when a nonsubscripted  item  has  been 
used  with a subscript. 

Compiler  capacity  error  messages  are  required  because,  as for  any  com- 
piler,  there  will  exist  otherwise  valid  source  programs  which  overextend  the 



compiler's  abilities.  Usually  these  types of errors  can  be  eliminated  by  di-  
viding  the program  into  segments  and  compiling  them  separately  or  by  rewrit- 
ing  the  statements  causing  the  overflow.  Some of this  class of e r r o r s   a r e  
global  in  nature  and  will  cause  immediate  termination  in  compilation,  includ- 
ing  the  error  scan of the  remainder of the  program.  One  such  error i s  ex- 
pected  to  be  the  case  in  which a CLASP programmer  has  defined  too  many 
symbols  for  the  compiler  to  handle.  Other  compiler  capacity  errors  are 
local  and  should  discontinue the scan  only  on a particular  statement,  so  that 
the  error  scan wi l l  continue  for  the  remainder of the  program.  For  example, 
when parentheses  are  nested  too  deeply  to  compile,  the  error  should  stop  the 
scan  in  the  current  statement  and  cause a skip  to  the  next  statement. A table 
which  handles  the  level of nesting  should  be  reinitialized s o  that  the  error  scan 
can  continue. 

Two cross-reference  tables  should  be  produced  to  aid  the  programmer  in 
analyzing  and  modifying  his  program.  The first is a label  cross-reference 
table  containing all labels  sorted  alphabetically,  their  compiler-assigned  ad- 
dresses ,  and a l ist  of numbers of statements  which  refer  to  the  labels.  The 
program  listing  should  have  sequential  numbers  attached  to  each  statement 
for  reference  purposes.  The  second  table is a cross-reference  listing of a l l  
declared  items  and  literal  constants  sorted  alphabetically,  their  compiler- 
assigned  addresses,  and  statement  numbers  indicating  where  the  item  or 
constant  was  referenced. 

A l ist  of fixed-point  items  should  also  be  printed  with  the  scaling  deter- 
mined  for  each  item,  since  the  compiler  may  have a choice of scalings.  This 
will  aid the programmer  in  choosing  scalings  for  quantities  used  in  modifica- 
tions  tohis  program  and is also  necessary so that  parameter  values  may  be 
correctly  scaled  prior  to  loading  into  the  target  computer. 

Compiler  Capacities 

The  minimum  compiler  capacities  should  be as follows: 

Program  Parameter  Minimum  Capacity 

Number of names,  including  data  item 
names,  statement  names,  and  procedure, 
function,  and  close  names  6,000 

Number of characters of source  code 320, 000 

Number of levels of nested  parentheses 15 

Length of object  program  in  words 

130 

16,384 



Implementation-Dependent  Language  Features 

CLASP is described  in  Part  I1 independently of any  target  computer  or 
implementation. When a compiler is developed  for a specific  computer,  cer- 
tain  language  characteristics  and  features will  have  to  be  clarified o r  altered 
in  light of the  implementation.  Following is a l ist  of language  characteristics 
to  be  defined: 

(1) Allowable  characters  that  may  be  used  in  text  or  comments 

( 2 )  Maximum  precision  obtainable  with  fixed-point  numeric 
quantities 

( 3 )  Range of values f o r  integer  quantities 

(4) Hardware  codes  for  machine  registers  and  interrupts 

( 5 )  Format  of direct  code 

. 

131 





A (fixed-point  type 
declarator) ................ 3 1. 34 

ABS (absolute  value  function) . 115 

Addition  operator (+) ......... 59 

AND (Boolean  operator) ...... 67 

Arrays : 
fixed . dimens  ion ............ 4 1 
variable-dimension c.. ...... 44 

Assignment ................. 7 i 
exchange ................. 85 
fixed.point. using  TEMP .... 75 
multiple ................... 79 
nonscalar .................. 8 1 
type  conversion  in .......... 72 

B (binary  constant  indicator) . . 28 

B (Boolean  type  declarator). . .31. 39 

Binary  constants ............. 28 

BOOLEAN (Boolean  type 
declarator) ............... 3 1. 39 

Boolean: 
constants .................. 2 6 
data  declarations ........... 39 
formulas .................. 66 
operators.  table of ......... 67 

BY (loop  statement  step  size 
indicator) ............. : .. 95 

Character   set  ............... 14 

Chronic  statements .......... 100 
CLOSE (close  declarator) ..... I I I 

Closes ................. I l l .  113 

Comments ................. 15 

CONSTANT (data  item 
attribute ................ 

in Boolean  declarations ..... 
in  fixed-point  declarations ... 
in  floating-point  declarations 
in  integer  declarations ...... 
in  textual  declarations ...... 

Constants : 
binary .................... 
Boolean ................... 
fixed.point ................. 
noatin  g-point .............. 
hexadecimal ............... 
integer ................... 
location ................... 
octal ..................... 
textual .................... 

COUNT (timing  directive 
start delimiter ............ 

31 
39 
34 
37 
38 
40 

28 
26 
22 
24 
28 
25 
30 
28 
27 

121 

Data  declarations: 
array.  fixed-dimension ..... 41 
array.  variable-dimension . . 44 
Boolean ................... 39 
fixed-point ................ 34 
floating-point ............... 37 

hardware ................. 48 
implicit  subscript .......... 45 
index ..................... 47 
integer .................... 38 
textual .................... 40 

group .................... 46 

DECLARE  (data  item 
declarator) ............... 3 1-49 

Debugging directives ......... 120 

DIRECT (direct  code 
start delimiter) ........... 123 

Conditional  statements ....... 92 Direct  code  directives ....... 123 

1 3 3  



.................... .....".. .................................... . . .  ... ......... ....- .......... ......._.._ .............. 

Directives: 
debugging ................ 120 
direct  code ............... 123 
optimization .............. 12.2 
timing ................... -12 1 

Division  operator ( / )  ....... 59 

ELSE  (ELSE  statement  group 
start  delimiter) .......... 92 

Enable  statements .......... 98 

END (conditional  and  loop 
statement  group  delimiter) 92. 95 

END (direct  code  delimiter) . . 123 

ENDALL (conditional  and 
loop  statement  group 
d.elimiter) ............... 92. 95 

EQ (relational  operator) ..... 66 

EQUIV (Boolean  operator) ... 67 

Floating  -point: 
constants .................. 24 
data  declarations ........... 37 

FOR (loop  statement 
start  delimiter) ........... 95 

Formulas : 
Boolean ................... 66 
logical .................... 62 
numeric ................... 59 
textual .................... 53 

Functions .................. 110 
GOT0  statements ........... .89. 90 

GQ (relational  operator) ...... 66 

GR (relational  operator) ...... 66 

Group  declarations .......... 46 

HARDWARE (hardware 
register  operand  declarator) 48 

Exchange  assignment ....... 85  Hardware: 

Exchange  operator (==) 85  ............... declarations 4 8  ...... interrupts ................ 100 
EXIT  (chronic  statement ....... delimiter) 100 Hexadecimal  constants 28 ............... .... 
EXIT  (procedure.  function. 

I (integer  type  declarator .31. 38 

and  close  delimiter) . 1 0 5 . i i O .  Identifier s .................. 15 

Exponentiation  ope  rator (**) . 59 I F  (conditional  statement 

F (floating  -point  type ........... start  delimiter) 92 

declarator ............... 31.  37 Implicit  subscript  declarations 45 

FALSE (Boolean  constant) ... 26 Implicitly  subscripted  items . . 58 

FIXED  (fixed-point  type INDEX (index  register 
declarator) .............. 31. 34 assignment  declaratorb .... 47 

Fixed-point:  Index  declarations ........... 47 . 
assignment  using TEMP .... 75 

22 constants ................ .... Inhibit/enable  statements .48. 98 

data  declarations .......... 34  INLINE (procedure  attribute) . . 104 

FLOATING (floating-point 
type  declarator .......... 31. 37 

134 



INTEGER  (integer  type 
declarator) .............. .31. 38 

constants .................. 25 
data  declarations ........... 38 

Interrupts.  hardware ........ 100 

indicator) ................ 30 

Labels.  statement ........... 88 

Library  subprograms ........ 114 

LIM (limiting  function) ....... 1 15 

Location  constants ........... 30 

LOCK (inhibit  directive) ..... .48. 98 

formulas .................. 62 
operators.  table of ......... 62 

Loop  statements ............ 95 

LOR (logical  operator) ....... 62 

LQ (relational  operator) ...... 66 

LS (relational  operator) ...... 66 

LSH (logical  operator) ....... 63 

LXOR (logical  operator) ...... 62 

Matrix  multiplication ......... 8 1 

descriptions ............... 13 

Multiplication  operator (*) .... 59 

Integer: 

L (location  constant 

LAND (logical  operator) ...... 62 

Logical: 

Metalanguage  used  in  format 

Multiple  assignment ......... 79 

Negation  operator  (unary .) ... 59 

Nonscalar: 
assignment ................ 81 
items ..................... 56 

NOT (Boolean  operator) ...... 
NQ (relational  operator) ...... 
Numbering  conventions ....... 
Numeric : 

formulas .................. 
operators.  table of ......... 

0 (octal  constant  indicator) ... 
Octal  constants .............. 
O F F  (Boolean  constant) ...... 
ON (Boolean  constant) ........ 
ON (chronic  statement 

start  delimiter) ........... 
Operator  precedence ......... 
Ope rator s : 

a s  signrnent (=) ............. 
Boolean ................... 
exchange(==) .............. 
logical .................... 
matrix  multiplication ( / * / )  . 
numeric ................... 
precedence of .............. 
relational .................. 
scaling ( . S) ................ 

Optimization  directives ...... 
OPTIMIZE  SPACE  (space  opti- 

mization  start  delimiter) ... 
OPTIMIZE TIME (time  opti- 

mization  start  delimiter) ... 
OR (Boolean  operator) ........ 
OVERLAY (storage  allocation 

declarator) ............... 
Overlay  declarations ......... 
PACK (packing  procedure) .... 

67 

66 

19 

59 
59 

28 

28 

26 

26 

100 

70 

7 1  
67 
85 
62 
8 1  
59 
70 
66 
77 

122 

122 

122 

67 

50 

50 

116 

135 



PARAMETER  (data  item 
attribute) ................. 3 1 

in  Boolean  declarations ..... 39 
in  fixed-point  declarations . . 34 
in  floating-point  declarations 37 
in  integer  declarations ....... 38 
in  textual  declarations ...... 40 

Parameters.   procedure ... .104. 107 

Periods.  use of: 
with  close  names .10 4. 107. i l l .  113 
with  function  names ......... 1 10 
with  group  declarations ..... 46 
with  procedure  names .... .104. 107 
with  statement  la'bels ...... .30. 88 

Preset  value  attr ibute ........ 31 
in  Boolean  declarations ..... 39 
in  fixed-point  declarations . . 34 
in  floating-point  declarations 37 
in  integer  declarations ...... 38 
in  textual  declarations ...... 40 

Primitive s : 
definition of ............... 15 
table of ................... 16 

declarator) ............ .104. 107 

Procedures ............... 104. 107 

PROC (procedure  and  function 

Program: 
control ................... 87 
structure .................. 14 

Relational  operators.  table of . 66 

REM (remainder  function) .... 114 

REMQUO (remainder-and- 
quotient  procedure) ........ 114 

RND (rounding  function) ...... 116 

RSH (logical  operator) ....... 63 

. S (scaling  operator) ........ 77 

Sample  program ........... .19. 20 

Scaling  operator (.S). ........ 77 

SIC (optimization  exemption 
start   delimiter)  ........... 122 

SIGN (sign-determination 
function) ................. 115 

Source  code  format .......... 14 

START (program start 
declarator) ............... 14 

Statement : 
format  ................... 14 
labels .................... 88 

STOP  statements ............ 102 

Subprograms ................ 103 

Subscripted  items ........... 54 

Subtraction  operator 
(binary -) ................ 59 

Switched  GOT0  statements ... 90 

T (textual  type  declarator) ... .31. 40 

TEMP  (data  item  attribute) ... 34 
in  fixed-point  assignment ... 75 
with  scaling  operator ....... 77 

TEXT (textual  type 
declarator) ............... 3 4 0  1.  

constants ................. 27 
data  declarations .......... 40 
formulas ................. 53 

T e xtual : 

THEN (THEN statement  group 
start   delimiter)  ........... 92 

Timing  directives ........... 121 

TO (inhibitlenable  statement 
delimiter) ................ 98 

136 



TO (loop  statement 
limit indicator) ........... 95 

TRACE  (debugging  directive 
s tar t   del imiter) .  .......... 120 

TRUE (Boolean  constant) ..... 26 

UNCOUNT (timing  directive 
end  delimiter ............ 121 

UNLOCK (enable  directive) .. .48,98 

UNPACK (unpacking  function) . 117 

UNPACX (sign-extended 
unpacking  function) ........ 1 17 

UNSIC (optimization  exemption 
end  delimiter) ............ 122 

UNSPACE (space  optimization 
end  delimiter) ............ 122 

UNTIME (time  optimization 
end  delimiter) ............ 122 

UNTRACE (de'bugging  directive 
end  delimiter) ............ 120 

Variable-dimension  array 
declarations.. ............ 44 

X (hexadecimal  constant 
indicator) ................ 29 

137 


